Metamath Proof Explorer


Theorem wspthsn

Description: The set of simple paths of a fixed length as word. (Contributed by Alexander van der Vekens, 1-Mar-2018) (Revised by AV, 11-May-2021)

Ref Expression
Assertion wspthsn NWSPathsNG=wNWWalksNG|ffSPathsGw

Proof

Step Hyp Ref Expression
1 oveq12 n=Ng=GnWWalksNg=NWWalksNG
2 fveq2 g=GSPathsg=SPathsG
3 2 breqd g=GfSPathsgwfSPathsGw
4 3 exbidv g=GffSPathsgwffSPathsGw
5 4 adantl n=Ng=GffSPathsgwffSPathsGw
6 1 5 rabeqbidv n=Ng=GwnWWalksNg|ffSPathsgw=wNWWalksNG|ffSPathsGw
7 df-wspthsn WSPathsN=n0,gVwnWWalksNg|ffSPathsgw
8 ovex NWWalksNGV
9 8 rabex wNWWalksNG|ffSPathsGwV
10 6 7 9 ovmpoa N0GVNWSPathsNG=wNWWalksNG|ffSPathsGw
11 7 mpondm0 ¬N0GVNWSPathsNG=
12 df-wwlksn WWalksN=n0,gVwWWalksg|w=n+1
13 12 mpondm0 ¬N0GVNWWalksNG=
14 13 rabeqdv ¬N0GVwNWWalksNG|ffSPathsGw=w|ffSPathsGw
15 rab0 w|ffSPathsGw=
16 14 15 eqtrdi ¬N0GVwNWWalksNG|ffSPathsGw=
17 11 16 eqtr4d ¬N0GVNWSPathsNG=wNWWalksNG|ffSPathsGw
18 10 17 pm2.61i NWSPathsNG=wNWWalksNG|ffSPathsGw