| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iswwlksnon.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | 0ov |  |-  ( A (/) B ) = (/) | 
						
							| 3 |  | df-wwlksnon |  |-  WWalksNOn = ( n e. NN0 , g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( n WWalksN g ) | ( ( w ` 0 ) = a /\ ( w ` n ) = b ) } ) ) | 
						
							| 4 | 3 | mpondm0 |  |-  ( -. ( N e. NN0 /\ G e. _V ) -> ( N WWalksNOn G ) = (/) ) | 
						
							| 5 | 4 | oveqd |  |-  ( -. ( N e. NN0 /\ G e. _V ) -> ( A ( N WWalksNOn G ) B ) = ( A (/) B ) ) | 
						
							| 6 |  | df-wwlksn |  |-  WWalksN = ( n e. NN0 , g e. _V |-> { w e. ( WWalks ` g ) | ( # ` w ) = ( n + 1 ) } ) | 
						
							| 7 | 6 | mpondm0 |  |-  ( -. ( N e. NN0 /\ G e. _V ) -> ( N WWalksN G ) = (/) ) | 
						
							| 8 | 7 | rabeqdv |  |-  ( -. ( N e. NN0 /\ G e. _V ) -> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } = { w e. (/) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } ) | 
						
							| 9 |  | rab0 |  |-  { w e. (/) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } = (/) | 
						
							| 10 | 8 9 | eqtrdi |  |-  ( -. ( N e. NN0 /\ G e. _V ) -> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } = (/) ) | 
						
							| 11 | 2 5 10 | 3eqtr4a |  |-  ( -. ( N e. NN0 /\ G e. _V ) -> ( A ( N WWalksNOn G ) B ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } ) | 
						
							| 12 | 1 | wwlksnon |  |-  ( ( N e. NN0 /\ G e. _V ) -> ( N WWalksNOn G ) = ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ -. ( A e. V /\ B e. V ) ) -> ( N WWalksNOn G ) = ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) ) | 
						
							| 14 | 13 | oveqd |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ -. ( A e. V /\ B e. V ) ) -> ( A ( N WWalksNOn G ) B ) = ( A ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) B ) ) | 
						
							| 15 |  | eqid |  |-  ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) = ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) | 
						
							| 16 | 15 | mpondm0 |  |-  ( -. ( A e. V /\ B e. V ) -> ( A ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) B ) = (/) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ -. ( A e. V /\ B e. V ) ) -> ( A ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) B ) = (/) ) | 
						
							| 18 | 14 17 | eqtrd |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ -. ( A e. V /\ B e. V ) ) -> ( A ( N WWalksNOn G ) B ) = (/) ) | 
						
							| 19 | 18 | ex |  |-  ( ( N e. NN0 /\ G e. _V ) -> ( -. ( A e. V /\ B e. V ) -> ( A ( N WWalksNOn G ) B ) = (/) ) ) | 
						
							| 20 | 5 2 | eqtrdi |  |-  ( -. ( N e. NN0 /\ G e. _V ) -> ( A ( N WWalksNOn G ) B ) = (/) ) | 
						
							| 21 | 20 | a1d |  |-  ( -. ( N e. NN0 /\ G e. _V ) -> ( -. ( A e. V /\ B e. V ) -> ( A ( N WWalksNOn G ) B ) = (/) ) ) | 
						
							| 22 | 19 21 | pm2.61i |  |-  ( -. ( A e. V /\ B e. V ) -> ( A ( N WWalksNOn G ) B ) = (/) ) | 
						
							| 23 | 1 | wwlknllvtx |  |-  ( w e. ( N WWalksN G ) -> ( ( w ` 0 ) e. V /\ ( w ` N ) e. V ) ) | 
						
							| 24 |  | eleq1 |  |-  ( A = ( w ` 0 ) -> ( A e. V <-> ( w ` 0 ) e. V ) ) | 
						
							| 25 | 24 | eqcoms |  |-  ( ( w ` 0 ) = A -> ( A e. V <-> ( w ` 0 ) e. V ) ) | 
						
							| 26 |  | eleq1 |  |-  ( B = ( w ` N ) -> ( B e. V <-> ( w ` N ) e. V ) ) | 
						
							| 27 | 26 | eqcoms |  |-  ( ( w ` N ) = B -> ( B e. V <-> ( w ` N ) e. V ) ) | 
						
							| 28 | 25 27 | bi2anan9 |  |-  ( ( ( w ` 0 ) = A /\ ( w ` N ) = B ) -> ( ( A e. V /\ B e. V ) <-> ( ( w ` 0 ) e. V /\ ( w ` N ) e. V ) ) ) | 
						
							| 29 | 23 28 | syl5ibrcom |  |-  ( w e. ( N WWalksN G ) -> ( ( ( w ` 0 ) = A /\ ( w ` N ) = B ) -> ( A e. V /\ B e. V ) ) ) | 
						
							| 30 | 29 | con3rr3 |  |-  ( -. ( A e. V /\ B e. V ) -> ( w e. ( N WWalksN G ) -> -. ( ( w ` 0 ) = A /\ ( w ` N ) = B ) ) ) | 
						
							| 31 | 30 | ralrimiv |  |-  ( -. ( A e. V /\ B e. V ) -> A. w e. ( N WWalksN G ) -. ( ( w ` 0 ) = A /\ ( w ` N ) = B ) ) | 
						
							| 32 |  | rabeq0 |  |-  ( { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } = (/) <-> A. w e. ( N WWalksN G ) -. ( ( w ` 0 ) = A /\ ( w ` N ) = B ) ) | 
						
							| 33 | 31 32 | sylibr |  |-  ( -. ( A e. V /\ B e. V ) -> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } = (/) ) | 
						
							| 34 | 22 33 | eqtr4d |  |-  ( -. ( A e. V /\ B e. V ) -> ( A ( N WWalksNOn G ) B ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } ) | 
						
							| 35 | 12 | adantr |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ ( A e. V /\ B e. V ) ) -> ( N WWalksNOn G ) = ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) ) | 
						
							| 36 |  | eqeq2 |  |-  ( a = A -> ( ( w ` 0 ) = a <-> ( w ` 0 ) = A ) ) | 
						
							| 37 |  | eqeq2 |  |-  ( b = B -> ( ( w ` N ) = b <-> ( w ` N ) = B ) ) | 
						
							| 38 | 36 37 | bi2anan9 |  |-  ( ( a = A /\ b = B ) -> ( ( ( w ` 0 ) = a /\ ( w ` N ) = b ) <-> ( ( w ` 0 ) = A /\ ( w ` N ) = B ) ) ) | 
						
							| 39 | 38 | rabbidv |  |-  ( ( a = A /\ b = B ) -> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } ) | 
						
							| 40 | 39 | adantl |  |-  ( ( ( ( N e. NN0 /\ G e. _V ) /\ ( A e. V /\ B e. V ) ) /\ ( a = A /\ b = B ) ) -> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } ) | 
						
							| 41 |  | simprl |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ ( A e. V /\ B e. V ) ) -> A e. V ) | 
						
							| 42 |  | simprr |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ ( A e. V /\ B e. V ) ) -> B e. V ) | 
						
							| 43 |  | ovex |  |-  ( N WWalksN G ) e. _V | 
						
							| 44 | 43 | rabex |  |-  { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } e. _V | 
						
							| 45 | 44 | a1i |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ ( A e. V /\ B e. V ) ) -> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } e. _V ) | 
						
							| 46 | 35 40 41 42 45 | ovmpod |  |-  ( ( ( N e. NN0 /\ G e. _V ) /\ ( A e. V /\ B e. V ) ) -> ( A ( N WWalksNOn G ) B ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } ) | 
						
							| 47 | 11 34 46 | ecase |  |-  ( A ( N WWalksNOn G ) B ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } |