| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iswwlksnon.v |
|- V = ( Vtx ` G ) |
| 2 |
|
0ov |
|- ( A (/) B ) = (/) |
| 3 |
|
df-wwlksnon |
|- WWalksNOn = ( n e. NN0 , g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( n WWalksN g ) | ( ( w ` 0 ) = a /\ ( w ` n ) = b ) } ) ) |
| 4 |
3
|
mpondm0 |
|- ( -. ( N e. NN0 /\ G e. _V ) -> ( N WWalksNOn G ) = (/) ) |
| 5 |
4
|
oveqd |
|- ( -. ( N e. NN0 /\ G e. _V ) -> ( A ( N WWalksNOn G ) B ) = ( A (/) B ) ) |
| 6 |
|
df-wwlksn |
|- WWalksN = ( n e. NN0 , g e. _V |-> { w e. ( WWalks ` g ) | ( # ` w ) = ( n + 1 ) } ) |
| 7 |
6
|
mpondm0 |
|- ( -. ( N e. NN0 /\ G e. _V ) -> ( N WWalksN G ) = (/) ) |
| 8 |
7
|
rabeqdv |
|- ( -. ( N e. NN0 /\ G e. _V ) -> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } = { w e. (/) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } ) |
| 9 |
|
rab0 |
|- { w e. (/) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } = (/) |
| 10 |
8 9
|
eqtrdi |
|- ( -. ( N e. NN0 /\ G e. _V ) -> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } = (/) ) |
| 11 |
2 5 10
|
3eqtr4a |
|- ( -. ( N e. NN0 /\ G e. _V ) -> ( A ( N WWalksNOn G ) B ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } ) |
| 12 |
1
|
wwlksnon |
|- ( ( N e. NN0 /\ G e. _V ) -> ( N WWalksNOn G ) = ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) ) |
| 13 |
12
|
adantr |
|- ( ( ( N e. NN0 /\ G e. _V ) /\ -. ( A e. V /\ B e. V ) ) -> ( N WWalksNOn G ) = ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) ) |
| 14 |
13
|
oveqd |
|- ( ( ( N e. NN0 /\ G e. _V ) /\ -. ( A e. V /\ B e. V ) ) -> ( A ( N WWalksNOn G ) B ) = ( A ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) B ) ) |
| 15 |
|
eqid |
|- ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) = ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) |
| 16 |
15
|
mpondm0 |
|- ( -. ( A e. V /\ B e. V ) -> ( A ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) B ) = (/) ) |
| 17 |
16
|
adantl |
|- ( ( ( N e. NN0 /\ G e. _V ) /\ -. ( A e. V /\ B e. V ) ) -> ( A ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) B ) = (/) ) |
| 18 |
14 17
|
eqtrd |
|- ( ( ( N e. NN0 /\ G e. _V ) /\ -. ( A e. V /\ B e. V ) ) -> ( A ( N WWalksNOn G ) B ) = (/) ) |
| 19 |
18
|
ex |
|- ( ( N e. NN0 /\ G e. _V ) -> ( -. ( A e. V /\ B e. V ) -> ( A ( N WWalksNOn G ) B ) = (/) ) ) |
| 20 |
5 2
|
eqtrdi |
|- ( -. ( N e. NN0 /\ G e. _V ) -> ( A ( N WWalksNOn G ) B ) = (/) ) |
| 21 |
20
|
a1d |
|- ( -. ( N e. NN0 /\ G e. _V ) -> ( -. ( A e. V /\ B e. V ) -> ( A ( N WWalksNOn G ) B ) = (/) ) ) |
| 22 |
19 21
|
pm2.61i |
|- ( -. ( A e. V /\ B e. V ) -> ( A ( N WWalksNOn G ) B ) = (/) ) |
| 23 |
1
|
wwlknllvtx |
|- ( w e. ( N WWalksN G ) -> ( ( w ` 0 ) e. V /\ ( w ` N ) e. V ) ) |
| 24 |
|
eleq1 |
|- ( A = ( w ` 0 ) -> ( A e. V <-> ( w ` 0 ) e. V ) ) |
| 25 |
24
|
eqcoms |
|- ( ( w ` 0 ) = A -> ( A e. V <-> ( w ` 0 ) e. V ) ) |
| 26 |
|
eleq1 |
|- ( B = ( w ` N ) -> ( B e. V <-> ( w ` N ) e. V ) ) |
| 27 |
26
|
eqcoms |
|- ( ( w ` N ) = B -> ( B e. V <-> ( w ` N ) e. V ) ) |
| 28 |
25 27
|
bi2anan9 |
|- ( ( ( w ` 0 ) = A /\ ( w ` N ) = B ) -> ( ( A e. V /\ B e. V ) <-> ( ( w ` 0 ) e. V /\ ( w ` N ) e. V ) ) ) |
| 29 |
23 28
|
syl5ibrcom |
|- ( w e. ( N WWalksN G ) -> ( ( ( w ` 0 ) = A /\ ( w ` N ) = B ) -> ( A e. V /\ B e. V ) ) ) |
| 30 |
29
|
con3rr3 |
|- ( -. ( A e. V /\ B e. V ) -> ( w e. ( N WWalksN G ) -> -. ( ( w ` 0 ) = A /\ ( w ` N ) = B ) ) ) |
| 31 |
30
|
ralrimiv |
|- ( -. ( A e. V /\ B e. V ) -> A. w e. ( N WWalksN G ) -. ( ( w ` 0 ) = A /\ ( w ` N ) = B ) ) |
| 32 |
|
rabeq0 |
|- ( { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } = (/) <-> A. w e. ( N WWalksN G ) -. ( ( w ` 0 ) = A /\ ( w ` N ) = B ) ) |
| 33 |
31 32
|
sylibr |
|- ( -. ( A e. V /\ B e. V ) -> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } = (/) ) |
| 34 |
22 33
|
eqtr4d |
|- ( -. ( A e. V /\ B e. V ) -> ( A ( N WWalksNOn G ) B ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } ) |
| 35 |
12
|
adantr |
|- ( ( ( N e. NN0 /\ G e. _V ) /\ ( A e. V /\ B e. V ) ) -> ( N WWalksNOn G ) = ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) ) |
| 36 |
|
eqeq2 |
|- ( a = A -> ( ( w ` 0 ) = a <-> ( w ` 0 ) = A ) ) |
| 37 |
|
eqeq2 |
|- ( b = B -> ( ( w ` N ) = b <-> ( w ` N ) = B ) ) |
| 38 |
36 37
|
bi2anan9 |
|- ( ( a = A /\ b = B ) -> ( ( ( w ` 0 ) = a /\ ( w ` N ) = b ) <-> ( ( w ` 0 ) = A /\ ( w ` N ) = B ) ) ) |
| 39 |
38
|
rabbidv |
|- ( ( a = A /\ b = B ) -> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } ) |
| 40 |
39
|
adantl |
|- ( ( ( ( N e. NN0 /\ G e. _V ) /\ ( A e. V /\ B e. V ) ) /\ ( a = A /\ b = B ) ) -> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } ) |
| 41 |
|
simprl |
|- ( ( ( N e. NN0 /\ G e. _V ) /\ ( A e. V /\ B e. V ) ) -> A e. V ) |
| 42 |
|
simprr |
|- ( ( ( N e. NN0 /\ G e. _V ) /\ ( A e. V /\ B e. V ) ) -> B e. V ) |
| 43 |
|
ovex |
|- ( N WWalksN G ) e. _V |
| 44 |
43
|
rabex |
|- { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } e. _V |
| 45 |
44
|
a1i |
|- ( ( ( N e. NN0 /\ G e. _V ) /\ ( A e. V /\ B e. V ) ) -> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } e. _V ) |
| 46 |
35 40 41 42 45
|
ovmpod |
|- ( ( ( N e. NN0 /\ G e. _V ) /\ ( A e. V /\ B e. V ) ) -> ( A ( N WWalksNOn G ) B ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } ) |
| 47 |
11 34 46
|
ecase |
|- ( A ( N WWalksNOn G ) B ) = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = A /\ ( w ` N ) = B ) } |