| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnon.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | df-wwlksnon |  |-  WWalksNOn = ( n e. NN0 , g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( n WWalksN g ) | ( ( w ` 0 ) = a /\ ( w ` n ) = b ) } ) ) | 
						
							| 3 | 2 | a1i |  |-  ( ( N e. NN0 /\ G e. U ) -> WWalksNOn = ( n e. NN0 , g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( n WWalksN g ) | ( ( w ` 0 ) = a /\ ( w ` n ) = b ) } ) ) ) | 
						
							| 4 |  | fveq2 |  |-  ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) | 
						
							| 5 | 4 1 | eqtr4di |  |-  ( g = G -> ( Vtx ` g ) = V ) | 
						
							| 6 | 5 | adantl |  |-  ( ( n = N /\ g = G ) -> ( Vtx ` g ) = V ) | 
						
							| 7 |  | oveq12 |  |-  ( ( n = N /\ g = G ) -> ( n WWalksN g ) = ( N WWalksN G ) ) | 
						
							| 8 |  | fveqeq2 |  |-  ( n = N -> ( ( w ` n ) = b <-> ( w ` N ) = b ) ) | 
						
							| 9 | 8 | anbi2d |  |-  ( n = N -> ( ( ( w ` 0 ) = a /\ ( w ` n ) = b ) <-> ( ( w ` 0 ) = a /\ ( w ` N ) = b ) ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( n = N /\ g = G ) -> ( ( ( w ` 0 ) = a /\ ( w ` n ) = b ) <-> ( ( w ` 0 ) = a /\ ( w ` N ) = b ) ) ) | 
						
							| 11 | 7 10 | rabeqbidv |  |-  ( ( n = N /\ g = G ) -> { w e. ( n WWalksN g ) | ( ( w ` 0 ) = a /\ ( w ` n ) = b ) } = { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) | 
						
							| 12 | 6 6 11 | mpoeq123dv |  |-  ( ( n = N /\ g = G ) -> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( n WWalksN g ) | ( ( w ` 0 ) = a /\ ( w ` n ) = b ) } ) = ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ( N e. NN0 /\ G e. U ) /\ ( n = N /\ g = G ) ) -> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { w e. ( n WWalksN g ) | ( ( w ` 0 ) = a /\ ( w ` n ) = b ) } ) = ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) ) | 
						
							| 14 |  | simpl |  |-  ( ( N e. NN0 /\ G e. U ) -> N e. NN0 ) | 
						
							| 15 |  | elex |  |-  ( G e. U -> G e. _V ) | 
						
							| 16 | 15 | adantl |  |-  ( ( N e. NN0 /\ G e. U ) -> G e. _V ) | 
						
							| 17 | 1 | fvexi |  |-  V e. _V | 
						
							| 18 | 17 17 | mpoex |  |-  ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) e. _V | 
						
							| 19 | 18 | a1i |  |-  ( ( N e. NN0 /\ G e. U ) -> ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) e. _V ) | 
						
							| 20 | 3 13 14 16 19 | ovmpod |  |-  ( ( N e. NN0 /\ G e. U ) -> ( N WWalksNOn G ) = ( a e. V , b e. V |-> { w e. ( N WWalksN G ) | ( ( w ` 0 ) = a /\ ( w ` N ) = b ) } ) ) |