Metamath Proof Explorer


Theorem wwlksnon

Description: The set of walks of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 15-Feb-2018) (Revised by AV, 11-May-2021)

Ref Expression
Hypothesis wwlksnon.v V=VtxG
Assertion wwlksnon N0GUNWWalksNOnG=aV,bVwNWWalksNG|w0=awN=b

Proof

Step Hyp Ref Expression
1 wwlksnon.v V=VtxG
2 df-wwlksnon WWalksNOn=n0,gVaVtxg,bVtxgwnWWalksNg|w0=awn=b
3 2 a1i N0GUWWalksNOn=n0,gVaVtxg,bVtxgwnWWalksNg|w0=awn=b
4 fveq2 g=GVtxg=VtxG
5 4 1 eqtr4di g=GVtxg=V
6 5 adantl n=Ng=GVtxg=V
7 oveq12 n=Ng=GnWWalksNg=NWWalksNG
8 fveqeq2 n=Nwn=bwN=b
9 8 anbi2d n=Nw0=awn=bw0=awN=b
10 9 adantr n=Ng=Gw0=awn=bw0=awN=b
11 7 10 rabeqbidv n=Ng=GwnWWalksNg|w0=awn=b=wNWWalksNG|w0=awN=b
12 6 6 11 mpoeq123dv n=Ng=GaVtxg,bVtxgwnWWalksNg|w0=awn=b=aV,bVwNWWalksNG|w0=awN=b
13 12 adantl N0GUn=Ng=GaVtxg,bVtxgwnWWalksNg|w0=awn=b=aV,bVwNWWalksNG|w0=awN=b
14 simpl N0GUN0
15 elex GUGV
16 15 adantl N0GUGV
17 1 fvexi VV
18 17 17 mpoex aV,bVwNWWalksNG|w0=awN=bV
19 18 a1i N0GUaV,bVwNWWalksNG|w0=awN=bV
20 3 13 14 16 19 ovmpod N0GUNWWalksNOnG=aV,bVwNWWalksNG|w0=awN=b