Metamath Proof Explorer


Theorem wspthsnon

Description: The set of simple paths of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 1-Mar-2018) (Revised by AV, 11-May-2021)

Ref Expression
Hypothesis wwlksnon.v V=VtxG
Assertion wspthsnon N0GUNWSPathsNOnG=aV,bVwaNWWalksNOnGb|ffaSPathsOnGbw

Proof

Step Hyp Ref Expression
1 wwlksnon.v V=VtxG
2 df-wspthsnon WSPathsNOn=n0,gVaVtxg,bVtxgwanWWalksNOngb|ffaSPathsOngbw
3 2 a1i N0GUWSPathsNOn=n0,gVaVtxg,bVtxgwanWWalksNOngb|ffaSPathsOngbw
4 fveq2 g=GVtxg=VtxG
5 4 1 eqtr4di g=GVtxg=V
6 5 adantl n=Ng=GVtxg=V
7 oveq12 n=Ng=GnWWalksNOng=NWWalksNOnG
8 7 oveqd n=Ng=GanWWalksNOngb=aNWWalksNOnGb
9 fveq2 g=GSPathsOng=SPathsOnG
10 9 oveqd g=GaSPathsOngb=aSPathsOnGb
11 10 breqd g=GfaSPathsOngbwfaSPathsOnGbw
12 11 adantl n=Ng=GfaSPathsOngbwfaSPathsOnGbw
13 12 exbidv n=Ng=GffaSPathsOngbwffaSPathsOnGbw
14 8 13 rabeqbidv n=Ng=GwanWWalksNOngb|ffaSPathsOngbw=waNWWalksNOnGb|ffaSPathsOnGbw
15 6 6 14 mpoeq123dv n=Ng=GaVtxg,bVtxgwanWWalksNOngb|ffaSPathsOngbw=aV,bVwaNWWalksNOnGb|ffaSPathsOnGbw
16 15 adantl N0GUn=Ng=GaVtxg,bVtxgwanWWalksNOngb|ffaSPathsOngbw=aV,bVwaNWWalksNOnGb|ffaSPathsOnGbw
17 simpl N0GUN0
18 elex GUGV
19 18 adantl N0GUGV
20 1 fvexi VV
21 20 20 mpoex aV,bVwaNWWalksNOnGb|ffaSPathsOnGbwV
22 21 a1i N0GUaV,bVwaNWWalksNOnGb|ffaSPathsOnGbwV
23 3 16 17 19 22 ovmpod N0GUNWSPathsNOnG=aV,bVwaNWWalksNOnGb|ffaSPathsOnGbw