| Step | Hyp | Ref | Expression | 
						
							| 1 |  | wwlksnon.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | df-wspthsnon | ⊢  WSPathsNOn   =  ( 𝑛  ∈  ℕ0 ,  𝑔  ∈  V  ↦  ( 𝑎  ∈  ( Vtx ‘ 𝑔 ) ,  𝑏  ∈  ( Vtx ‘ 𝑔 )  ↦  { 𝑤  ∈  ( 𝑎 ( 𝑛  WWalksNOn  𝑔 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤 } ) ) | 
						
							| 3 | 2 | a1i | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  𝑈 )  →   WSPathsNOn   =  ( 𝑛  ∈  ℕ0 ,  𝑔  ∈  V  ↦  ( 𝑎  ∈  ( Vtx ‘ 𝑔 ) ,  𝑏  ∈  ( Vtx ‘ 𝑔 )  ↦  { 𝑤  ∈  ( 𝑎 ( 𝑛  WWalksNOn  𝑔 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤 } ) ) ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( Vtx ‘ 𝑔 )  =  ( Vtx ‘ 𝐺 ) ) | 
						
							| 5 | 4 1 | eqtr4di | ⊢ ( 𝑔  =  𝐺  →  ( Vtx ‘ 𝑔 )  =  𝑉 ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑔  =  𝐺 )  →  ( Vtx ‘ 𝑔 )  =  𝑉 ) | 
						
							| 7 |  | oveq12 | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑔  =  𝐺 )  →  ( 𝑛  WWalksNOn  𝑔 )  =  ( 𝑁  WWalksNOn  𝐺 ) ) | 
						
							| 8 | 7 | oveqd | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑔  =  𝐺 )  →  ( 𝑎 ( 𝑛  WWalksNOn  𝑔 ) 𝑏 )  =  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( SPathsOn ‘ 𝑔 )  =  ( SPathsOn ‘ 𝐺 ) ) | 
						
							| 10 | 9 | oveqd | ⊢ ( 𝑔  =  𝐺  →  ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 )  =  ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) ) | 
						
							| 11 | 10 | breqd | ⊢ ( 𝑔  =  𝐺  →  ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤  ↔  𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 ) ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑔  =  𝐺 )  →  ( 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤  ↔  𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 ) ) | 
						
							| 13 | 12 | exbidv | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑔  =  𝐺 )  →  ( ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤  ↔  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 ) ) | 
						
							| 14 | 8 13 | rabeqbidv | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑔  =  𝐺 )  →  { 𝑤  ∈  ( 𝑎 ( 𝑛  WWalksNOn  𝑔 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤 }  =  { 𝑤  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 } ) | 
						
							| 15 | 6 6 14 | mpoeq123dv | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑔  =  𝐺 )  →  ( 𝑎  ∈  ( Vtx ‘ 𝑔 ) ,  𝑏  ∈  ( Vtx ‘ 𝑔 )  ↦  { 𝑤  ∈  ( 𝑎 ( 𝑛  WWalksNOn  𝑔 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤 } )  =  ( 𝑎  ∈  𝑉 ,  𝑏  ∈  𝑉  ↦  { 𝑤  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 } ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  𝑈 )  ∧  ( 𝑛  =  𝑁  ∧  𝑔  =  𝐺 ) )  →  ( 𝑎  ∈  ( Vtx ‘ 𝑔 ) ,  𝑏  ∈  ( Vtx ‘ 𝑔 )  ↦  { 𝑤  ∈  ( 𝑎 ( 𝑛  WWalksNOn  𝑔 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝑔 ) 𝑏 ) 𝑤 } )  =  ( 𝑎  ∈  𝑉 ,  𝑏  ∈  𝑉  ↦  { 𝑤  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 } ) ) | 
						
							| 17 |  | simpl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  𝑈 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 18 |  | elex | ⊢ ( 𝐺  ∈  𝑈  →  𝐺  ∈  V ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  𝑈 )  →  𝐺  ∈  V ) | 
						
							| 20 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 21 | 20 20 | mpoex | ⊢ ( 𝑎  ∈  𝑉 ,  𝑏  ∈  𝑉  ↦  { 𝑤  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 } )  ∈  V | 
						
							| 22 | 21 | a1i | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  𝑈 )  →  ( 𝑎  ∈  𝑉 ,  𝑏  ∈  𝑉  ↦  { 𝑤  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 } )  ∈  V ) | 
						
							| 23 | 3 16 17 19 22 | ovmpod | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  𝐺  ∈  𝑈 )  →  ( 𝑁  WSPathsNOn  𝐺 )  =  ( 𝑎  ∈  𝑉 ,  𝑏  ∈  𝑉  ↦  { 𝑤  ∈  ( 𝑎 ( 𝑁  WWalksNOn  𝐺 ) 𝑏 )  ∣  ∃ 𝑓 𝑓 ( 𝑎 ( SPathsOn ‘ 𝐺 ) 𝑏 ) 𝑤 } ) ) |