Metamath Proof Explorer


Theorem wwlksnon

Description: The set of walks of a fixed length between two vertices as word. (Contributed by Alexander van der Vekens, 15-Feb-2018) (Revised by AV, 11-May-2021)

Ref Expression
Hypothesis wwlksnon.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion wwlksnon ( ( 𝑁 ∈ ℕ0𝐺𝑈 ) → ( 𝑁 WWalksNOn 𝐺 ) = ( 𝑎𝑉 , 𝑏𝑉 ↦ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤𝑁 ) = 𝑏 ) } ) )

Proof

Step Hyp Ref Expression
1 wwlksnon.v 𝑉 = ( Vtx ‘ 𝐺 )
2 df-wwlksnon WWalksNOn = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤𝑛 ) = 𝑏 ) } ) )
3 2 a1i ( ( 𝑁 ∈ ℕ0𝐺𝑈 ) → WWalksNOn = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤𝑛 ) = 𝑏 ) } ) ) )
4 fveq2 ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) )
5 4 1 syl6eqr ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = 𝑉 )
6 5 adantl ( ( 𝑛 = 𝑁𝑔 = 𝐺 ) → ( Vtx ‘ 𝑔 ) = 𝑉 )
7 oveq12 ( ( 𝑛 = 𝑁𝑔 = 𝐺 ) → ( 𝑛 WWalksN 𝑔 ) = ( 𝑁 WWalksN 𝐺 ) )
8 fveqeq2 ( 𝑛 = 𝑁 → ( ( 𝑤𝑛 ) = 𝑏 ↔ ( 𝑤𝑁 ) = 𝑏 ) )
9 8 anbi2d ( 𝑛 = 𝑁 → ( ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤𝑛 ) = 𝑏 ) ↔ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤𝑁 ) = 𝑏 ) ) )
10 9 adantr ( ( 𝑛 = 𝑁𝑔 = 𝐺 ) → ( ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤𝑛 ) = 𝑏 ) ↔ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤𝑁 ) = 𝑏 ) ) )
11 7 10 rabeqbidv ( ( 𝑛 = 𝑁𝑔 = 𝐺 ) → { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤𝑛 ) = 𝑏 ) } = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤𝑁 ) = 𝑏 ) } )
12 6 6 11 mpoeq123dv ( ( 𝑛 = 𝑁𝑔 = 𝐺 ) → ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤𝑛 ) = 𝑏 ) } ) = ( 𝑎𝑉 , 𝑏𝑉 ↦ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤𝑁 ) = 𝑏 ) } ) )
13 12 adantl ( ( ( 𝑁 ∈ ℕ0𝐺𝑈 ) ∧ ( 𝑛 = 𝑁𝑔 = 𝐺 ) ) → ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 𝑤 ∈ ( 𝑛 WWalksN 𝑔 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤𝑛 ) = 𝑏 ) } ) = ( 𝑎𝑉 , 𝑏𝑉 ↦ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤𝑁 ) = 𝑏 ) } ) )
14 simpl ( ( 𝑁 ∈ ℕ0𝐺𝑈 ) → 𝑁 ∈ ℕ0 )
15 elex ( 𝐺𝑈𝐺 ∈ V )
16 15 adantl ( ( 𝑁 ∈ ℕ0𝐺𝑈 ) → 𝐺 ∈ V )
17 1 fvexi 𝑉 ∈ V
18 17 17 mpoex ( 𝑎𝑉 , 𝑏𝑉 ↦ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤𝑁 ) = 𝑏 ) } ) ∈ V
19 18 a1i ( ( 𝑁 ∈ ℕ0𝐺𝑈 ) → ( 𝑎𝑉 , 𝑏𝑉 ↦ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤𝑁 ) = 𝑏 ) } ) ∈ V )
20 3 13 14 16 19 ovmpod ( ( 𝑁 ∈ ℕ0𝐺𝑈 ) → ( 𝑁 WWalksNOn 𝐺 ) = ( 𝑎𝑉 , 𝑏𝑉 ↦ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑎 ∧ ( 𝑤𝑁 ) = 𝑏 ) } ) )