| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknclwwlkdif.a | ⊢ 𝐴  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } | 
						
							| 2 |  | clwwlknclwwlkdif.b | ⊢ 𝐵  =  ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 ) | 
						
							| 3 |  | clwwlknclwwlkdif.c | ⊢ 𝐶  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } | 
						
							| 4 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 5 | 4 | iswwlksnon | ⊢ ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑋 ) } | 
						
							| 6 | 2 5 | eqtri | ⊢ 𝐵  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑋 ) } | 
						
							| 7 | 3 6 | difeq12i | ⊢ ( 𝐶  ∖  𝐵 )  =  ( { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  ∖  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑋 ) } ) | 
						
							| 8 |  | difrab | ⊢ ( { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  ∖  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑋 ) } )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ¬  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑋 ) ) } | 
						
							| 9 |  | annotanannot | ⊢ ( ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ¬  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑋 ) )  ↔  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ¬  ( 𝑤 ‘ 𝑁 )  =  𝑋 ) ) | 
						
							| 10 |  | df-ne | ⊢ ( ( 𝑤 ‘ 𝑁 )  ≠  𝑋  ↔  ¬  ( 𝑤 ‘ 𝑁 )  =  𝑋 ) | 
						
							| 11 |  | wwlknlsw | ⊢ ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( 𝑤 ‘ 𝑁 )  =  ( lastS ‘ 𝑤 ) ) | 
						
							| 12 | 11 | neeq1d | ⊢ ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( 𝑤 ‘ 𝑁 )  ≠  𝑋  ↔  ( lastS ‘ 𝑤 )  ≠  𝑋 ) ) | 
						
							| 13 | 10 12 | bitr3id | ⊢ ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ¬  ( 𝑤 ‘ 𝑁 )  =  𝑋  ↔  ( lastS ‘ 𝑤 )  ≠  𝑋 ) ) | 
						
							| 14 | 13 | anbi2d | ⊢ ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ¬  ( 𝑤 ‘ 𝑁 )  =  𝑋 )  ↔  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) ) ) | 
						
							| 15 | 9 14 | bitrid | ⊢ ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ¬  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑋 ) )  ↔  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) ) ) | 
						
							| 16 | 15 | rabbiia | ⊢ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ¬  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑋 ) ) }  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) } | 
						
							| 17 | 7 8 16 | 3eqtrri | ⊢ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) }  =  ( 𝐶  ∖  𝐵 ) | 
						
							| 18 | 1 17 | eqtri | ⊢ 𝐴  =  ( 𝐶  ∖  𝐵 ) |