| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rusgrnumwwlkg.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | 3simpc |  |-  ( ( V e. Fin /\ P e. V /\ N e. NN0 ) -> ( P e. V /\ N e. NN0 ) ) | 
						
							| 3 | 2 | adantl |  |-  ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ N e. NN0 ) ) -> ( P e. V /\ N e. NN0 ) ) | 
						
							| 4 |  | eqid |  |-  ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) ) = ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) ) | 
						
							| 5 | 1 4 | rusgrnumwwlklem |  |-  ( ( P e. V /\ N e. NN0 ) -> ( P ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) ) N ) = ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) ) | 
						
							| 6 | 3 5 | syl |  |-  ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ N e. NN0 ) ) -> ( P ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) ) N ) = ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) ) | 
						
							| 7 | 1 4 | rusgrnumwwlk |  |-  ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ N e. NN0 ) ) -> ( P ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) ) N ) = ( K ^ N ) ) | 
						
							| 8 | 6 7 | eqtr3d |  |-  ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ N e. NN0 ) ) -> ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) = ( K ^ N ) ) |