Step |
Hyp |
Ref |
Expression |
1 |
|
rusgrnumwwlkg.v |
|- V = ( Vtx ` G ) |
2 |
|
3simpc |
|- ( ( V e. Fin /\ P e. V /\ N e. NN0 ) -> ( P e. V /\ N e. NN0 ) ) |
3 |
2
|
adantl |
|- ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ N e. NN0 ) ) -> ( P e. V /\ N e. NN0 ) ) |
4 |
|
eqid |
|- ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) ) = ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) ) |
5 |
1 4
|
rusgrnumwwlklem |
|- ( ( P e. V /\ N e. NN0 ) -> ( P ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) ) N ) = ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) ) |
6 |
3 5
|
syl |
|- ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ N e. NN0 ) ) -> ( P ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) ) N ) = ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) ) |
7 |
1 4
|
rusgrnumwwlk |
|- ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ N e. NN0 ) ) -> ( P ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) ) N ) = ( K ^ N ) ) |
8 |
6 7
|
eqtr3d |
|- ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ N e. NN0 ) ) -> ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) = ( K ^ N ) ) |