Metamath Proof Explorer


Theorem rusgrnumwwlkg

Description: In a K-regular graph, the number of walks (as words) of a fixed length N from a fixed vertex is K to the power of N . Closed form of rusgrnumwwlk . (Contributed by Alexander van der Vekens, 30-Sep-2018) (Revised by AV, 7-May-2021)

Ref Expression
Hypothesis rusgrnumwwlkg.v
|- V = ( Vtx ` G )
Assertion rusgrnumwwlkg
|- ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ N e. NN0 ) ) -> ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) = ( K ^ N ) )

Proof

Step Hyp Ref Expression
1 rusgrnumwwlkg.v
 |-  V = ( Vtx ` G )
2 3simpc
 |-  ( ( V e. Fin /\ P e. V /\ N e. NN0 ) -> ( P e. V /\ N e. NN0 ) )
3 2 adantl
 |-  ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ N e. NN0 ) ) -> ( P e. V /\ N e. NN0 ) )
4 eqid
 |-  ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) ) = ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) )
5 1 4 rusgrnumwwlklem
 |-  ( ( P e. V /\ N e. NN0 ) -> ( P ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) ) N ) = ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) )
6 3 5 syl
 |-  ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ N e. NN0 ) ) -> ( P ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) ) N ) = ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) )
7 1 4 rusgrnumwwlk
 |-  ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ N e. NN0 ) ) -> ( P ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) ) N ) = ( K ^ N ) )
8 6 7 eqtr3d
 |-  ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ N e. NN0 ) ) -> ( # ` { w e. ( N WWalksN G ) | ( w ` 0 ) = P } ) = ( K ^ N ) )