Step |
Hyp |
Ref |
Expression |
1 |
|
rusgrnumwwlkg.v |
|- V = ( Vtx ` G ) |
2 |
|
ovex |
|- ( N WWalksN G ) e. _V |
3 |
2
|
rabex |
|- { p e. ( N WWalksN G ) | ( p ` 0 ) = P } e. _V |
4 |
|
rusgrusgr |
|- ( G RegUSGraph K -> G e. USGraph ) |
5 |
|
usgruspgr |
|- ( G e. USGraph -> G e. USPGraph ) |
6 |
4 5
|
syl |
|- ( G RegUSGraph K -> G e. USPGraph ) |
7 |
|
simp3 |
|- ( ( V e. Fin /\ P e. V /\ N e. NN0 ) -> N e. NN0 ) |
8 |
|
wlksnwwlknvbij |
|- ( ( G e. USPGraph /\ N e. NN0 ) -> E. f f : { w e. ( Walks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = P ) } -1-1-onto-> { p e. ( N WWalksN G ) | ( p ` 0 ) = P } ) |
9 |
6 7 8
|
syl2an |
|- ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ N e. NN0 ) ) -> E. f f : { w e. ( Walks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = P ) } -1-1-onto-> { p e. ( N WWalksN G ) | ( p ` 0 ) = P } ) |
10 |
|
f1oexbi |
|- ( E. g g : { p e. ( N WWalksN G ) | ( p ` 0 ) = P } -1-1-onto-> { w e. ( Walks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = P ) } <-> E. f f : { w e. ( Walks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = P ) } -1-1-onto-> { p e. ( N WWalksN G ) | ( p ` 0 ) = P } ) |
11 |
9 10
|
sylibr |
|- ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ N e. NN0 ) ) -> E. g g : { p e. ( N WWalksN G ) | ( p ` 0 ) = P } -1-1-onto-> { w e. ( Walks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = P ) } ) |
12 |
|
hasheqf1oi |
|- ( { p e. ( N WWalksN G ) | ( p ` 0 ) = P } e. _V -> ( E. g g : { p e. ( N WWalksN G ) | ( p ` 0 ) = P } -1-1-onto-> { w e. ( Walks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = P ) } -> ( # ` { p e. ( N WWalksN G ) | ( p ` 0 ) = P } ) = ( # ` { w e. ( Walks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = P ) } ) ) ) |
13 |
3 11 12
|
mpsyl |
|- ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ N e. NN0 ) ) -> ( # ` { p e. ( N WWalksN G ) | ( p ` 0 ) = P } ) = ( # ` { w e. ( Walks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = P ) } ) ) |
14 |
1
|
rusgrnumwwlkg |
|- ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ N e. NN0 ) ) -> ( # ` { p e. ( N WWalksN G ) | ( p ` 0 ) = P } ) = ( K ^ N ) ) |
15 |
13 14
|
eqtr3d |
|- ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ N e. NN0 ) ) -> ( # ` { w e. ( Walks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = P ) } ) = ( K ^ N ) ) |