| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rusgrnumwwlkg.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | ovex |  |-  ( N WWalksN G ) e. _V | 
						
							| 3 | 2 | rabex |  |-  { p e. ( N WWalksN G ) | ( p ` 0 ) = P } e. _V | 
						
							| 4 |  | rusgrusgr |  |-  ( G RegUSGraph K -> G e. USGraph ) | 
						
							| 5 |  | usgruspgr |  |-  ( G e. USGraph -> G e. USPGraph ) | 
						
							| 6 | 4 5 | syl |  |-  ( G RegUSGraph K -> G e. USPGraph ) | 
						
							| 7 |  | simp3 |  |-  ( ( V e. Fin /\ P e. V /\ N e. NN0 ) -> N e. NN0 ) | 
						
							| 8 |  | wlksnwwlknvbij |  |-  ( ( G e. USPGraph /\ N e. NN0 ) -> E. f f : { w e. ( Walks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = P ) } -1-1-onto-> { p e. ( N WWalksN G ) | ( p ` 0 ) = P } ) | 
						
							| 9 | 6 7 8 | syl2an |  |-  ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ N e. NN0 ) ) -> E. f f : { w e. ( Walks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = P ) } -1-1-onto-> { p e. ( N WWalksN G ) | ( p ` 0 ) = P } ) | 
						
							| 10 |  | f1oexbi |  |-  ( E. g g : { p e. ( N WWalksN G ) | ( p ` 0 ) = P } -1-1-onto-> { w e. ( Walks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = P ) } <-> E. f f : { w e. ( Walks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = P ) } -1-1-onto-> { p e. ( N WWalksN G ) | ( p ` 0 ) = P } ) | 
						
							| 11 | 9 10 | sylibr |  |-  ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ N e. NN0 ) ) -> E. g g : { p e. ( N WWalksN G ) | ( p ` 0 ) = P } -1-1-onto-> { w e. ( Walks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = P ) } ) | 
						
							| 12 |  | hasheqf1oi |  |-  ( { p e. ( N WWalksN G ) | ( p ` 0 ) = P } e. _V -> ( E. g g : { p e. ( N WWalksN G ) | ( p ` 0 ) = P } -1-1-onto-> { w e. ( Walks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = P ) } -> ( # ` { p e. ( N WWalksN G ) | ( p ` 0 ) = P } ) = ( # ` { w e. ( Walks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = P ) } ) ) ) | 
						
							| 13 | 3 11 12 | mpsyl |  |-  ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ N e. NN0 ) ) -> ( # ` { p e. ( N WWalksN G ) | ( p ` 0 ) = P } ) = ( # ` { w e. ( Walks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = P ) } ) ) | 
						
							| 14 | 1 | rusgrnumwwlkg |  |-  ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ N e. NN0 ) ) -> ( # ` { p e. ( N WWalksN G ) | ( p ` 0 ) = P } ) = ( K ^ N ) ) | 
						
							| 15 | 13 14 | eqtr3d |  |-  ( ( G RegUSGraph K /\ ( V e. Fin /\ P e. V /\ N e. NN0 ) ) -> ( # ` { w e. ( Walks ` G ) | ( ( # ` ( 1st ` w ) ) = N /\ ( ( 2nd ` w ) ` 0 ) = P ) } ) = ( K ^ N ) ) |