| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rusgrnumwwlkg.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | ovex | ⊢ ( 𝑁  WWalksN  𝐺 )  ∈  V | 
						
							| 3 | 2 | rabex | ⊢ { 𝑝  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑝 ‘ 0 )  =  𝑃 }  ∈  V | 
						
							| 4 |  | rusgrusgr | ⊢ ( 𝐺  RegUSGraph  𝐾  →  𝐺  ∈  USGraph ) | 
						
							| 5 |  | usgruspgr | ⊢ ( 𝐺  ∈  USGraph  →  𝐺  ∈  USPGraph ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝐺  RegUSGraph  𝐾  →  𝐺  ∈  USPGraph ) | 
						
							| 7 |  | simp3 | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℕ0 ) | 
						
							| 8 |  | wlksnwwlknvbij | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑁  ∈  ℕ0 )  →  ∃ 𝑓 𝑓 : { 𝑤  ∈  ( Walks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  𝑁  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑃 ) } –1-1-onto→ { 𝑝  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑝 ‘ 0 )  =  𝑃 } ) | 
						
							| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ∃ 𝑓 𝑓 : { 𝑤  ∈  ( Walks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  𝑁  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑃 ) } –1-1-onto→ { 𝑝  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑝 ‘ 0 )  =  𝑃 } ) | 
						
							| 10 |  | f1oexbi | ⊢ ( ∃ 𝑔 𝑔 : { 𝑝  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑝 ‘ 0 )  =  𝑃 } –1-1-onto→ { 𝑤  ∈  ( Walks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  𝑁  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑃 ) }  ↔  ∃ 𝑓 𝑓 : { 𝑤  ∈  ( Walks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  𝑁  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑃 ) } –1-1-onto→ { 𝑝  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑝 ‘ 0 )  =  𝑃 } ) | 
						
							| 11 | 9 10 | sylibr | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ∃ 𝑔 𝑔 : { 𝑝  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑝 ‘ 0 )  =  𝑃 } –1-1-onto→ { 𝑤  ∈  ( Walks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  𝑁  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑃 ) } ) | 
						
							| 12 |  | hasheqf1oi | ⊢ ( { 𝑝  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑝 ‘ 0 )  =  𝑃 }  ∈  V  →  ( ∃ 𝑔 𝑔 : { 𝑝  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑝 ‘ 0 )  =  𝑃 } –1-1-onto→ { 𝑤  ∈  ( Walks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  𝑁  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑃 ) }  →  ( ♯ ‘ { 𝑝  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑝 ‘ 0 )  =  𝑃 } )  =  ( ♯ ‘ { 𝑤  ∈  ( Walks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  𝑁  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑃 ) } ) ) ) | 
						
							| 13 | 3 11 12 | mpsyl | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( ♯ ‘ { 𝑝  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑝 ‘ 0 )  =  𝑃 } )  =  ( ♯ ‘ { 𝑤  ∈  ( Walks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  𝑁  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑃 ) } ) ) | 
						
							| 14 | 1 | rusgrnumwwlkg | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( ♯ ‘ { 𝑝  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑝 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) ) | 
						
							| 15 | 13 14 | eqtr3d | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( ♯ ‘ { 𝑤  ∈  ( Walks ‘ 𝐺 )  ∣  ( ( ♯ ‘ ( 1st  ‘ 𝑤 ) )  =  𝑁  ∧  ( ( 2nd  ‘ 𝑤 ) ‘ 0 )  =  𝑃 ) } )  =  ( 𝐾 ↑ 𝑁 ) ) |