| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rusgrnumwwlkg.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | 3simpc | ⊢ ( ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( 𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) ) | 
						
							| 4 |  | eqid | ⊢ ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ℕ0  ↦  ( ♯ ‘ { 𝑤  ∈  ( 𝑛  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑣 } ) )  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ℕ0  ↦  ( ♯ ‘ { 𝑤  ∈  ( 𝑛  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑣 } ) ) | 
						
							| 5 | 1 4 | rusgrnumwwlklem | ⊢ ( ( 𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑃 ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ℕ0  ↦  ( ♯ ‘ { 𝑤  ∈  ( 𝑛  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑣 } ) ) 𝑁 )  =  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } ) ) | 
						
							| 6 | 3 5 | syl | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( 𝑃 ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ℕ0  ↦  ( ♯ ‘ { 𝑤  ∈  ( 𝑛  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑣 } ) ) 𝑁 )  =  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } ) ) | 
						
							| 7 | 1 4 | rusgrnumwwlk | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( 𝑃 ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ℕ0  ↦  ( ♯ ‘ { 𝑤  ∈  ( 𝑛  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑣 } ) ) 𝑁 )  =  ( 𝐾 ↑ 𝑁 ) ) | 
						
							| 8 | 6 7 | eqtr3d | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( 𝐾 ↑ 𝑁 ) ) |