Metamath Proof Explorer


Theorem rusgrnumwwlkg

Description: In a K-regular graph, the number of walks (as words) of a fixed length N from a fixed vertex is K to the power of N . Closed form of rusgrnumwwlk . (Contributed by Alexander van der Vekens, 30-Sep-2018) (Revised by AV, 7-May-2021)

Ref Expression
Hypothesis rusgrnumwwlkg.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion rusgrnumwwlkg ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0 ) ) → ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾𝑁 ) )

Proof

Step Hyp Ref Expression
1 rusgrnumwwlkg.v 𝑉 = ( Vtx ‘ 𝐺 )
2 3simpc ( ( 𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0 ) → ( 𝑃𝑉𝑁 ∈ ℕ0 ) )
3 2 adantl ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0 ) ) → ( 𝑃𝑉𝑁 ∈ ℕ0 ) )
4 eqid ( 𝑣𝑉 , 𝑛 ∈ ℕ0 ↦ ( ♯ ‘ { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) ) = ( 𝑣𝑉 , 𝑛 ∈ ℕ0 ↦ ( ♯ ‘ { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) )
5 1 4 rusgrnumwwlklem ( ( 𝑃𝑉𝑁 ∈ ℕ0 ) → ( 𝑃 ( 𝑣𝑉 , 𝑛 ∈ ℕ0 ↦ ( ♯ ‘ { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) ) 𝑁 ) = ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) )
6 3 5 syl ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0 ) ) → ( 𝑃 ( 𝑣𝑉 , 𝑛 ∈ ℕ0 ↦ ( ♯ ‘ { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) ) 𝑁 ) = ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) )
7 1 4 rusgrnumwwlk ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0 ) ) → ( 𝑃 ( 𝑣𝑉 , 𝑛 ∈ ℕ0 ↦ ( ♯ ‘ { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) ) 𝑁 ) = ( 𝐾𝑁 ) )
8 6 7 eqtr3d ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑃𝑉𝑁 ∈ ℕ0 ) ) → ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( 𝐾𝑁 ) )