Metamath Proof Explorer


Theorem rusgrnumwwlkg

Description: In a K-regular graph, the number of walks (as words) of a fixed length N from a fixed vertex is K to the power of N . Closed form of rusgrnumwwlk . (Contributed by Alexander van der Vekens, 30-Sep-2018) (Revised by AV, 7-May-2021)

Ref Expression
Hypothesis rusgrnumwwlkg.v V = Vtx G
Assertion rusgrnumwwlkg G RegUSGraph K V Fin P V N 0 w N WWalksN G | w 0 = P = K N

Proof

Step Hyp Ref Expression
1 rusgrnumwwlkg.v V = Vtx G
2 3simpc V Fin P V N 0 P V N 0
3 2 adantl G RegUSGraph K V Fin P V N 0 P V N 0
4 eqid v V , n 0 w n WWalksN G | w 0 = v = v V , n 0 w n WWalksN G | w 0 = v
5 1 4 rusgrnumwwlklem P V N 0 P v V , n 0 w n WWalksN G | w 0 = v N = w N WWalksN G | w 0 = P
6 3 5 syl G RegUSGraph K V Fin P V N 0 P v V , n 0 w n WWalksN G | w 0 = v N = w N WWalksN G | w 0 = P
7 1 4 rusgrnumwwlk G RegUSGraph K V Fin P V N 0 P v V , n 0 w n WWalksN G | w 0 = v N = K N
8 6 7 eqtr3d G RegUSGraph K V Fin P V N 0 w N WWalksN G | w 0 = P = K N