| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rusgrnumwwlk.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | rusgrnumwwlk.l | ⊢ 𝐿  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ℕ0  ↦  ( ♯ ‘ { 𝑤  ∈  ( 𝑛  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑣 } ) ) | 
						
							| 3 |  | oveq1 | ⊢ ( 𝑛  =  𝑁  →  ( 𝑛  WWalksN  𝐺 )  =  ( 𝑁  WWalksN  𝐺 ) ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝑣  =  𝑃  ∧  𝑛  =  𝑁 )  →  ( 𝑛  WWalksN  𝐺 )  =  ( 𝑁  WWalksN  𝐺 ) ) | 
						
							| 5 |  | eqeq2 | ⊢ ( 𝑣  =  𝑃  →  ( ( 𝑤 ‘ 0 )  =  𝑣  ↔  ( 𝑤 ‘ 0 )  =  𝑃 ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑣  =  𝑃  ∧  𝑛  =  𝑁 )  →  ( ( 𝑤 ‘ 0 )  =  𝑣  ↔  ( 𝑤 ‘ 0 )  =  𝑃 ) ) | 
						
							| 7 | 4 6 | rabeqbidv | ⊢ ( ( 𝑣  =  𝑃  ∧  𝑛  =  𝑁 )  →  { 𝑤  ∈  ( 𝑛  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑣 }  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( ( 𝑣  =  𝑃  ∧  𝑛  =  𝑁 )  →  ( ♯ ‘ { 𝑤  ∈  ( 𝑛  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑣 } )  =  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } ) ) | 
						
							| 9 |  | fvex | ⊢ ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  ∈  V | 
						
							| 10 | 8 2 9 | ovmpoa | ⊢ ( ( 𝑃  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑃 𝐿 𝑁 )  =  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } ) ) |