Step |
Hyp |
Ref |
Expression |
1 |
|
rusgrnumwwlk.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
rusgrnumwwlk.l |
⊢ 𝐿 = ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ℕ0 ↦ ( ♯ ‘ { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) ) |
3 |
|
oveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 WWalksN 𝐺 ) = ( 𝑁 WWalksN 𝐺 ) ) |
4 |
3
|
adantl |
⊢ ( ( 𝑣 = 𝑃 ∧ 𝑛 = 𝑁 ) → ( 𝑛 WWalksN 𝐺 ) = ( 𝑁 WWalksN 𝐺 ) ) |
5 |
|
eqeq2 |
⊢ ( 𝑣 = 𝑃 → ( ( 𝑤 ‘ 0 ) = 𝑣 ↔ ( 𝑤 ‘ 0 ) = 𝑃 ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝑣 = 𝑃 ∧ 𝑛 = 𝑁 ) → ( ( 𝑤 ‘ 0 ) = 𝑣 ↔ ( 𝑤 ‘ 0 ) = 𝑃 ) ) |
7 |
4 6
|
rabeqbidv |
⊢ ( ( 𝑣 = 𝑃 ∧ 𝑛 = 𝑁 ) → { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) |
8 |
7
|
fveq2d |
⊢ ( ( 𝑣 = 𝑃 ∧ 𝑛 = 𝑁 ) → ( ♯ ‘ { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) = ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) ) |
9 |
|
fvex |
⊢ ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) ∈ V |
10 |
8 2 9
|
ovmpoa |
⊢ ( ( 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑃 𝐿 𝑁 ) = ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) ) |