Metamath Proof Explorer


Theorem rusgrnumwwlklem

Description: Lemma for rusgrnumwwlk etc. (Contributed by Alexander van der Vekens, 21-Jul-2018) (Revised by AV, 7-May-2021)

Ref Expression
Hypotheses rusgrnumwwlk.v 𝑉 = ( Vtx ‘ 𝐺 )
rusgrnumwwlk.l 𝐿 = ( 𝑣𝑉 , 𝑛 ∈ ℕ0 ↦ ( ♯ ‘ { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) )
Assertion rusgrnumwwlklem ( ( 𝑃𝑉𝑁 ∈ ℕ0 ) → ( 𝑃 𝐿 𝑁 ) = ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) )

Proof

Step Hyp Ref Expression
1 rusgrnumwwlk.v 𝑉 = ( Vtx ‘ 𝐺 )
2 rusgrnumwwlk.l 𝐿 = ( 𝑣𝑉 , 𝑛 ∈ ℕ0 ↦ ( ♯ ‘ { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) )
3 oveq1 ( 𝑛 = 𝑁 → ( 𝑛 WWalksN 𝐺 ) = ( 𝑁 WWalksN 𝐺 ) )
4 3 adantl ( ( 𝑣 = 𝑃𝑛 = 𝑁 ) → ( 𝑛 WWalksN 𝐺 ) = ( 𝑁 WWalksN 𝐺 ) )
5 eqeq2 ( 𝑣 = 𝑃 → ( ( 𝑤 ‘ 0 ) = 𝑣 ↔ ( 𝑤 ‘ 0 ) = 𝑃 ) )
6 5 adantr ( ( 𝑣 = 𝑃𝑛 = 𝑁 ) → ( ( 𝑤 ‘ 0 ) = 𝑣 ↔ ( 𝑤 ‘ 0 ) = 𝑃 ) )
7 4 6 rabeqbidv ( ( 𝑣 = 𝑃𝑛 = 𝑁 ) → { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } )
8 7 fveq2d ( ( 𝑣 = 𝑃𝑛 = 𝑁 ) → ( ♯ ‘ { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) = ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) )
9 fvex ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) ∈ V
10 8 2 9 ovmpoa ( ( 𝑃𝑉𝑁 ∈ ℕ0 ) → ( 𝑃 𝐿 𝑁 ) = ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) )