| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rusgrnumwwlk.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | rusgrnumwwlk.l | ⊢ 𝐿  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ℕ0  ↦  ( ♯ ‘ { 𝑤  ∈  ( 𝑛  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑣 } ) ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  𝑉 )  →  𝑃  ∈  𝑉 ) | 
						
							| 4 |  | 0nn0 | ⊢ 0  ∈  ℕ0 | 
						
							| 5 | 1 2 | rusgrnumwwlklem | ⊢ ( ( 𝑃  ∈  𝑉  ∧  0  ∈  ℕ0 )  →  ( 𝑃 𝐿 0 )  =  ( ♯ ‘ { 𝑤  ∈  ( 0  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } ) ) | 
						
							| 6 | 3 4 5 | sylancl | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  𝑉 )  →  ( 𝑃 𝐿 0 )  =  ( ♯ ‘ { 𝑤  ∈  ( 0  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } ) ) | 
						
							| 7 |  | df-rab | ⊢ { 𝑤  ∈  ( 0  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  =  { 𝑤  ∣  ( 𝑤  ∈  ( 0  WWalksN  𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝑃 ) } | 
						
							| 8 | 7 | a1i | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  𝑉 )  →  { 𝑤  ∈  ( 0  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  =  { 𝑤  ∣  ( 𝑤  ∈  ( 0  WWalksN  𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝑃 ) } ) | 
						
							| 9 |  | wwlksn0s | ⊢ ( 0  WWalksN  𝐺 )  =  { 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  1 } | 
						
							| 10 | 9 | a1i | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  𝑉 )  →  ( 0  WWalksN  𝐺 )  =  { 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  1 } ) | 
						
							| 11 | 10 | eleq2d | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  𝑉 )  →  ( 𝑤  ∈  ( 0  WWalksN  𝐺 )  ↔  𝑤  ∈  { 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  1 } ) ) | 
						
							| 12 |  | rabid | ⊢ ( 𝑤  ∈  { 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∣  ( ♯ ‘ 𝑤 )  =  1 }  ↔  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  1 ) ) | 
						
							| 13 | 11 12 | bitrdi | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  𝑉 )  →  ( 𝑤  ∈  ( 0  WWalksN  𝐺 )  ↔  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  1 ) ) ) | 
						
							| 14 | 13 | anbi1d | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  𝑉 )  →  ( ( 𝑤  ∈  ( 0  WWalksN  𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝑃 )  ↔  ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  1 )  ∧  ( 𝑤 ‘ 0 )  =  𝑃 ) ) ) | 
						
							| 15 | 14 | abbidv | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  𝑉 )  →  { 𝑤  ∣  ( 𝑤  ∈  ( 0  WWalksN  𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝑃 ) }  =  { 𝑤  ∣  ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  1 )  ∧  ( 𝑤 ‘ 0 )  =  𝑃 ) } ) | 
						
							| 16 |  | wrdl1s1 | ⊢ ( 𝑃  ∈  ( Vtx ‘ 𝐺 )  →  ( 𝑣  =  〈“ 𝑃 ”〉  ↔  ( 𝑣  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑣 )  =  1  ∧  ( 𝑣 ‘ 0 )  =  𝑃 ) ) ) | 
						
							| 17 |  | df-3an | ⊢ ( ( 𝑣  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑣 )  =  1  ∧  ( 𝑣 ‘ 0 )  =  𝑃 )  ↔  ( ( 𝑣  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑣 )  =  1 )  ∧  ( 𝑣 ‘ 0 )  =  𝑃 ) ) | 
						
							| 18 | 16 17 | bitr2di | ⊢ ( 𝑃  ∈  ( Vtx ‘ 𝐺 )  →  ( ( ( 𝑣  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑣 )  =  1 )  ∧  ( 𝑣 ‘ 0 )  =  𝑃 )  ↔  𝑣  =  〈“ 𝑃 ”〉 ) ) | 
						
							| 19 |  | vex | ⊢ 𝑣  ∈  V | 
						
							| 20 |  | eleq1w | ⊢ ( 𝑤  =  𝑣  →  ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ↔  𝑣  ∈  Word  ( Vtx ‘ 𝐺 ) ) ) | 
						
							| 21 |  | fveqeq2 | ⊢ ( 𝑤  =  𝑣  →  ( ( ♯ ‘ 𝑤 )  =  1  ↔  ( ♯ ‘ 𝑣 )  =  1 ) ) | 
						
							| 22 | 20 21 | anbi12d | ⊢ ( 𝑤  =  𝑣  →  ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  1 )  ↔  ( 𝑣  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑣 )  =  1 ) ) ) | 
						
							| 23 |  | fveq1 | ⊢ ( 𝑤  =  𝑣  →  ( 𝑤 ‘ 0 )  =  ( 𝑣 ‘ 0 ) ) | 
						
							| 24 | 23 | eqeq1d | ⊢ ( 𝑤  =  𝑣  →  ( ( 𝑤 ‘ 0 )  =  𝑃  ↔  ( 𝑣 ‘ 0 )  =  𝑃 ) ) | 
						
							| 25 | 22 24 | anbi12d | ⊢ ( 𝑤  =  𝑣  →  ( ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  1 )  ∧  ( 𝑤 ‘ 0 )  =  𝑃 )  ↔  ( ( 𝑣  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑣 )  =  1 )  ∧  ( 𝑣 ‘ 0 )  =  𝑃 ) ) ) | 
						
							| 26 | 19 25 | elab | ⊢ ( 𝑣  ∈  { 𝑤  ∣  ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  1 )  ∧  ( 𝑤 ‘ 0 )  =  𝑃 ) }  ↔  ( ( 𝑣  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑣 )  =  1 )  ∧  ( 𝑣 ‘ 0 )  =  𝑃 ) ) | 
						
							| 27 |  | velsn | ⊢ ( 𝑣  ∈  { 〈“ 𝑃 ”〉 }  ↔  𝑣  =  〈“ 𝑃 ”〉 ) | 
						
							| 28 | 18 26 27 | 3bitr4g | ⊢ ( 𝑃  ∈  ( Vtx ‘ 𝐺 )  →  ( 𝑣  ∈  { 𝑤  ∣  ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  1 )  ∧  ( 𝑤 ‘ 0 )  =  𝑃 ) }  ↔  𝑣  ∈  { 〈“ 𝑃 ”〉 } ) ) | 
						
							| 29 | 28 1 | eleq2s | ⊢ ( 𝑃  ∈  𝑉  →  ( 𝑣  ∈  { 𝑤  ∣  ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  1 )  ∧  ( 𝑤 ‘ 0 )  =  𝑃 ) }  ↔  𝑣  ∈  { 〈“ 𝑃 ”〉 } ) ) | 
						
							| 30 | 29 | eqrdv | ⊢ ( 𝑃  ∈  𝑉  →  { 𝑤  ∣  ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  1 )  ∧  ( 𝑤 ‘ 0 )  =  𝑃 ) }  =  { 〈“ 𝑃 ”〉 } ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  𝑉 )  →  { 𝑤  ∣  ( ( 𝑤  ∈  Word  ( Vtx ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  1 )  ∧  ( 𝑤 ‘ 0 )  =  𝑃 ) }  =  { 〈“ 𝑃 ”〉 } ) | 
						
							| 32 | 8 15 31 | 3eqtrd | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  𝑉 )  →  { 𝑤  ∈  ( 0  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  =  { 〈“ 𝑃 ”〉 } ) | 
						
							| 33 | 32 | fveq2d | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  𝑉 )  →  ( ♯ ‘ { 𝑤  ∈  ( 0  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( ♯ ‘ { 〈“ 𝑃 ”〉 } ) ) | 
						
							| 34 |  | s1cl | ⊢ ( 𝑃  ∈  𝑉  →  〈“ 𝑃 ”〉  ∈  Word  𝑉 ) | 
						
							| 35 |  | hashsng | ⊢ ( 〈“ 𝑃 ”〉  ∈  Word  𝑉  →  ( ♯ ‘ { 〈“ 𝑃 ”〉 } )  =  1 ) | 
						
							| 36 | 34 35 | syl | ⊢ ( 𝑃  ∈  𝑉  →  ( ♯ ‘ { 〈“ 𝑃 ”〉 } )  =  1 ) | 
						
							| 37 | 36 | adantl | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  𝑉 )  →  ( ♯ ‘ { 〈“ 𝑃 ”〉 } )  =  1 ) | 
						
							| 38 | 6 33 37 | 3eqtrd | ⊢ ( ( 𝐺  ∈  USPGraph  ∧  𝑃  ∈  𝑉 )  →  ( 𝑃 𝐿 0 )  =  1 ) |