| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rusgrnumwwlk.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | rusgrnumwwlk.l | ⊢ 𝐿  =  ( 𝑣  ∈  𝑉 ,  𝑛  ∈  ℕ0  ↦  ( ♯ ‘ { 𝑤  ∈  ( 𝑛  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑣 } ) ) | 
						
							| 3 |  | simpr | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  →  𝑃  ∈  𝑉 ) | 
						
							| 4 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 5 | 1 2 | rusgrnumwwlklem | ⊢ ( ( 𝑃  ∈  𝑉  ∧  1  ∈  ℕ0 )  →  ( 𝑃 𝐿 1 )  =  ( ♯ ‘ { 𝑤  ∈  ( 1  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } ) ) | 
						
							| 6 | 3 4 5 | sylancl | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  →  ( 𝑃 𝐿 1 )  =  ( ♯ ‘ { 𝑤  ∈  ( 1  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } ) ) | 
						
							| 7 | 1 | rusgrnumwwlkl1 | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  →  ( ♯ ‘ { 𝑤  ∈  ( 1  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  𝐾 ) | 
						
							| 8 | 6 7 | eqtrd | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  →  ( 𝑃 𝐿 1 )  =  𝐾 ) |