Step |
Hyp |
Ref |
Expression |
1 |
|
rusgrnumwwlk.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
rusgrnumwwlk.l |
⊢ 𝐿 = ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ℕ0 ↦ ( ♯ ‘ { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) ) |
3 |
|
simpr |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) → 𝑃 ∈ 𝑉 ) |
4 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
5 |
1 2
|
rusgrnumwwlklem |
⊢ ( ( 𝑃 ∈ 𝑉 ∧ 1 ∈ ℕ0 ) → ( 𝑃 𝐿 1 ) = ( ♯ ‘ { 𝑤 ∈ ( 1 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) ) |
6 |
3 4 5
|
sylancl |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) → ( 𝑃 𝐿 1 ) = ( ♯ ‘ { 𝑤 ∈ ( 1 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) ) |
7 |
1
|
rusgrnumwwlkl1 |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) → ( ♯ ‘ { 𝑤 ∈ ( 1 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = 𝐾 ) |
8 |
6 7
|
eqtrd |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) → ( 𝑃 𝐿 1 ) = 𝐾 ) |