Metamath Proof Explorer


Theorem rusgrnumwwlkb1

Description: Induction base 1 for rusgrnumwwlk . (Contributed by Alexander van der Vekens, 28-Jul-2018) (Revised by AV, 7-May-2021)

Ref Expression
Hypotheses rusgrnumwwlk.v 𝑉 = ( Vtx ‘ 𝐺 )
rusgrnumwwlk.l 𝐿 = ( 𝑣𝑉 , 𝑛 ∈ ℕ0 ↦ ( ♯ ‘ { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) )
Assertion rusgrnumwwlkb1 ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) → ( 𝑃 𝐿 1 ) = 𝐾 )

Proof

Step Hyp Ref Expression
1 rusgrnumwwlk.v 𝑉 = ( Vtx ‘ 𝐺 )
2 rusgrnumwwlk.l 𝐿 = ( 𝑣𝑉 , 𝑛 ∈ ℕ0 ↦ ( ♯ ‘ { 𝑤 ∈ ( 𝑛 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) )
3 simpr ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) → 𝑃𝑉 )
4 1nn0 1 ∈ ℕ0
5 1 2 rusgrnumwwlklem ( ( 𝑃𝑉 ∧ 1 ∈ ℕ0 ) → ( 𝑃 𝐿 1 ) = ( ♯ ‘ { 𝑤 ∈ ( 1 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) )
6 3 4 5 sylancl ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) → ( 𝑃 𝐿 1 ) = ( ♯ ‘ { 𝑤 ∈ ( 1 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) )
7 1 rusgrnumwwlkl1 ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) → ( ♯ ‘ { 𝑤 ∈ ( 1 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = 𝐾 )
8 6 7 eqtrd ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) → ( 𝑃 𝐿 1 ) = 𝐾 )