Metamath Proof Explorer


Theorem rusgrnumwwlkb1

Description: Induction base 1 for rusgrnumwwlk . (Contributed by Alexander van der Vekens, 28-Jul-2018) (Revised by AV, 7-May-2021)

Ref Expression
Hypotheses rusgrnumwwlk.v V = Vtx G
rusgrnumwwlk.l L = v V , n 0 w n WWalksN G | w 0 = v
Assertion rusgrnumwwlkb1 G RegUSGraph K P V P L 1 = K

Proof

Step Hyp Ref Expression
1 rusgrnumwwlk.v V = Vtx G
2 rusgrnumwwlk.l L = v V , n 0 w n WWalksN G | w 0 = v
3 simpr G RegUSGraph K P V P V
4 1nn0 1 0
5 1 2 rusgrnumwwlklem P V 1 0 P L 1 = w 1 WWalksN G | w 0 = P
6 3 4 5 sylancl G RegUSGraph K P V P L 1 = w 1 WWalksN G | w 0 = P
7 1 rusgrnumwwlkl1 G RegUSGraph K P V w 1 WWalksN G | w 0 = P = K
8 6 7 eqtrd G RegUSGraph K P V P L 1 = K