Metamath Proof Explorer


Theorem rusgrnumwwlkb1

Description: Induction base 1 for rusgrnumwwlk . (Contributed by Alexander van der Vekens, 28-Jul-2018) (Revised by AV, 7-May-2021)

Ref Expression
Hypotheses rusgrnumwwlk.v V=VtxG
rusgrnumwwlk.l L=vV,n0wnWWalksNG|w0=v
Assertion rusgrnumwwlkb1 GRegUSGraphKPVPL1=K

Proof

Step Hyp Ref Expression
1 rusgrnumwwlk.v V=VtxG
2 rusgrnumwwlk.l L=vV,n0wnWWalksNG|w0=v
3 simpr GRegUSGraphKPVPV
4 1nn0 10
5 1 2 rusgrnumwwlklem PV10PL1=w1WWalksNG|w0=P
6 3 4 5 sylancl GRegUSGraphKPVPL1=w1WWalksNG|w0=P
7 1 rusgrnumwwlkl1 GRegUSGraphKPVw1WWalksNG|w0=P=K
8 6 7 eqtrd GRegUSGraphKPVPL1=K