| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rusgrnumwwlk.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | rusgrnumwwlk.l |  |-  L = ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) ) | 
						
							| 3 |  | simpr |  |-  ( ( G RegUSGraph K /\ P e. V ) -> P e. V ) | 
						
							| 4 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 5 | 1 2 | rusgrnumwwlklem |  |-  ( ( P e. V /\ 1 e. NN0 ) -> ( P L 1 ) = ( # ` { w e. ( 1 WWalksN G ) | ( w ` 0 ) = P } ) ) | 
						
							| 6 | 3 4 5 | sylancl |  |-  ( ( G RegUSGraph K /\ P e. V ) -> ( P L 1 ) = ( # ` { w e. ( 1 WWalksN G ) | ( w ` 0 ) = P } ) ) | 
						
							| 7 | 1 | rusgrnumwwlkl1 |  |-  ( ( G RegUSGraph K /\ P e. V ) -> ( # ` { w e. ( 1 WWalksN G ) | ( w ` 0 ) = P } ) = K ) | 
						
							| 8 | 6 7 | eqtrd |  |-  ( ( G RegUSGraph K /\ P e. V ) -> ( P L 1 ) = K ) |