Metamath Proof Explorer


Theorem rusgrnumwwlkb1

Description: Induction base 1 for rusgrnumwwlk . (Contributed by Alexander van der Vekens, 28-Jul-2018) (Revised by AV, 7-May-2021)

Ref Expression
Hypotheses rusgrnumwwlk.v
|- V = ( Vtx ` G )
rusgrnumwwlk.l
|- L = ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) )
Assertion rusgrnumwwlkb1
|- ( ( G RegUSGraph K /\ P e. V ) -> ( P L 1 ) = K )

Proof

Step Hyp Ref Expression
1 rusgrnumwwlk.v
 |-  V = ( Vtx ` G )
2 rusgrnumwwlk.l
 |-  L = ( v e. V , n e. NN0 |-> ( # ` { w e. ( n WWalksN G ) | ( w ` 0 ) = v } ) )
3 simpr
 |-  ( ( G RegUSGraph K /\ P e. V ) -> P e. V )
4 1nn0
 |-  1 e. NN0
5 1 2 rusgrnumwwlklem
 |-  ( ( P e. V /\ 1 e. NN0 ) -> ( P L 1 ) = ( # ` { w e. ( 1 WWalksN G ) | ( w ` 0 ) = P } ) )
6 3 4 5 sylancl
 |-  ( ( G RegUSGraph K /\ P e. V ) -> ( P L 1 ) = ( # ` { w e. ( 1 WWalksN G ) | ( w ` 0 ) = P } ) )
7 1 rusgrnumwwlkl1
 |-  ( ( G RegUSGraph K /\ P e. V ) -> ( # ` { w e. ( 1 WWalksN G ) | ( w ` 0 ) = P } ) = K )
8 6 7 eqtrd
 |-  ( ( G RegUSGraph K /\ P e. V ) -> ( P L 1 ) = K )