| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rusgrnumwwlkl1.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 3 |  | iswwlksn |  |-  ( 1 e. NN0 -> ( w e. ( 1 WWalksN G ) <-> ( w e. ( WWalks ` G ) /\ ( # ` w ) = ( 1 + 1 ) ) ) ) | 
						
							| 4 | 2 3 | ax-mp |  |-  ( w e. ( 1 WWalksN G ) <-> ( w e. ( WWalks ` G ) /\ ( # ` w ) = ( 1 + 1 ) ) ) | 
						
							| 5 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 6 | 1 5 | iswwlks |  |-  ( w e. ( WWalks ` G ) <-> ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 7 | 6 | anbi1i |  |-  ( ( w e. ( WWalks ` G ) /\ ( # ` w ) = ( 1 + 1 ) ) <-> ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = ( 1 + 1 ) ) ) | 
						
							| 8 | 4 7 | bitri |  |-  ( w e. ( 1 WWalksN G ) <-> ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = ( 1 + 1 ) ) ) | 
						
							| 9 | 8 | a1i |  |-  ( ( G RegUSGraph K /\ P e. V ) -> ( w e. ( 1 WWalksN G ) <-> ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = ( 1 + 1 ) ) ) ) | 
						
							| 10 | 9 | anbi1d |  |-  ( ( G RegUSGraph K /\ P e. V ) -> ( ( w e. ( 1 WWalksN G ) /\ ( w ` 0 ) = P ) <-> ( ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = ( 1 + 1 ) ) /\ ( w ` 0 ) = P ) ) ) | 
						
							| 11 |  | 1p1e2 |  |-  ( 1 + 1 ) = 2 | 
						
							| 12 | 11 | eqeq2i |  |-  ( ( # ` w ) = ( 1 + 1 ) <-> ( # ` w ) = 2 ) | 
						
							| 13 | 12 | a1i |  |-  ( ( G RegUSGraph K /\ P e. V ) -> ( ( # ` w ) = ( 1 + 1 ) <-> ( # ` w ) = 2 ) ) | 
						
							| 14 | 13 | anbi2d |  |-  ( ( G RegUSGraph K /\ P e. V ) -> ( ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = ( 1 + 1 ) ) <-> ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = 2 ) ) ) | 
						
							| 15 |  | 3anass |  |-  ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) <-> ( w =/= (/) /\ ( w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) | 
						
							| 16 | 15 | a1i |  |-  ( ( ( G RegUSGraph K /\ P e. V ) /\ ( # ` w ) = 2 ) -> ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) <-> ( w =/= (/) /\ ( w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) ) | 
						
							| 17 |  | fveq2 |  |-  ( w = (/) -> ( # ` w ) = ( # ` (/) ) ) | 
						
							| 18 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 19 | 17 18 | eqtrdi |  |-  ( w = (/) -> ( # ` w ) = 0 ) | 
						
							| 20 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 21 | 20 | nesymi |  |-  -. 0 = 2 | 
						
							| 22 |  | eqeq1 |  |-  ( ( # ` w ) = 0 -> ( ( # ` w ) = 2 <-> 0 = 2 ) ) | 
						
							| 23 | 21 22 | mtbiri |  |-  ( ( # ` w ) = 0 -> -. ( # ` w ) = 2 ) | 
						
							| 24 | 19 23 | syl |  |-  ( w = (/) -> -. ( # ` w ) = 2 ) | 
						
							| 25 | 24 | necon2ai |  |-  ( ( # ` w ) = 2 -> w =/= (/) ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ( G RegUSGraph K /\ P e. V ) /\ ( # ` w ) = 2 ) -> w =/= (/) ) | 
						
							| 27 | 26 | biantrurd |  |-  ( ( ( G RegUSGraph K /\ P e. V ) /\ ( # ` w ) = 2 ) -> ( ( w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) <-> ( w =/= (/) /\ ( w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) ) | 
						
							| 28 |  | oveq1 |  |-  ( ( # ` w ) = 2 -> ( ( # ` w ) - 1 ) = ( 2 - 1 ) ) | 
						
							| 29 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 30 | 28 29 | eqtrdi |  |-  ( ( # ` w ) = 2 -> ( ( # ` w ) - 1 ) = 1 ) | 
						
							| 31 | 30 | oveq2d |  |-  ( ( # ` w ) = 2 -> ( 0 ..^ ( ( # ` w ) - 1 ) ) = ( 0 ..^ 1 ) ) | 
						
							| 32 | 31 | adantl |  |-  ( ( ( G RegUSGraph K /\ P e. V ) /\ ( # ` w ) = 2 ) -> ( 0 ..^ ( ( # ` w ) - 1 ) ) = ( 0 ..^ 1 ) ) | 
						
							| 33 | 32 | raleqdv |  |-  ( ( ( G RegUSGraph K /\ P e. V ) /\ ( # ` w ) = 2 ) -> ( A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( 0 ..^ 1 ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) | 
						
							| 34 |  | fzo01 |  |-  ( 0 ..^ 1 ) = { 0 } | 
						
							| 35 | 34 | raleqi |  |-  ( A. i e. ( 0 ..^ 1 ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. { 0 } { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) | 
						
							| 36 |  | c0ex |  |-  0 e. _V | 
						
							| 37 |  | fveq2 |  |-  ( i = 0 -> ( w ` i ) = ( w ` 0 ) ) | 
						
							| 38 |  | fv0p1e1 |  |-  ( i = 0 -> ( w ` ( i + 1 ) ) = ( w ` 1 ) ) | 
						
							| 39 | 37 38 | preq12d |  |-  ( i = 0 -> { ( w ` i ) , ( w ` ( i + 1 ) ) } = { ( w ` 0 ) , ( w ` 1 ) } ) | 
						
							| 40 | 39 | eleq1d |  |-  ( i = 0 -> ( { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) | 
						
							| 41 | 36 40 | ralsn |  |-  ( A. i e. { 0 } { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) | 
						
							| 42 | 35 41 | bitri |  |-  ( A. i e. ( 0 ..^ 1 ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) | 
						
							| 43 | 33 42 | bitrdi |  |-  ( ( ( G RegUSGraph K /\ P e. V ) /\ ( # ` w ) = 2 ) -> ( A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) | 
						
							| 44 | 43 | anbi2d |  |-  ( ( ( G RegUSGraph K /\ P e. V ) /\ ( # ` w ) = 2 ) -> ( ( w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) <-> ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) ) | 
						
							| 45 | 16 27 44 | 3bitr2d |  |-  ( ( ( G RegUSGraph K /\ P e. V ) /\ ( # ` w ) = 2 ) -> ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) <-> ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) ) | 
						
							| 46 | 45 | ex |  |-  ( ( G RegUSGraph K /\ P e. V ) -> ( ( # ` w ) = 2 -> ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) <-> ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) ) ) | 
						
							| 47 | 46 | pm5.32rd |  |-  ( ( G RegUSGraph K /\ P e. V ) -> ( ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = 2 ) <-> ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( # ` w ) = 2 ) ) ) | 
						
							| 48 | 14 47 | bitrd |  |-  ( ( G RegUSGraph K /\ P e. V ) -> ( ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = ( 1 + 1 ) ) <-> ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( # ` w ) = 2 ) ) ) | 
						
							| 49 | 48 | anbi1d |  |-  ( ( G RegUSGraph K /\ P e. V ) -> ( ( ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = ( 1 + 1 ) ) /\ ( w ` 0 ) = P ) <-> ( ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( # ` w ) = 2 ) /\ ( w ` 0 ) = P ) ) ) | 
						
							| 50 |  | anass |  |-  ( ( ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( # ` w ) = 2 ) /\ ( w ` 0 ) = P ) <-> ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) ) | 
						
							| 51 | 49 50 | bitrdi |  |-  ( ( G RegUSGraph K /\ P e. V ) -> ( ( ( ( w =/= (/) /\ w e. Word V /\ A. i e. ( 0 ..^ ( ( # ` w ) - 1 ) ) { ( w ` i ) , ( w ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( # ` w ) = ( 1 + 1 ) ) /\ ( w ` 0 ) = P ) <-> ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) ) ) | 
						
							| 52 |  | anass |  |-  ( ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) <-> ( w e. Word V /\ ( { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) ) ) | 
						
							| 53 |  | ancom |  |-  ( ( { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) <-> ( ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) | 
						
							| 54 |  | df-3an |  |-  ( ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) <-> ( ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) | 
						
							| 55 | 53 54 | bitr4i |  |-  ( ( { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) <-> ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) | 
						
							| 56 | 55 | anbi2i |  |-  ( ( w e. Word V /\ ( { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) ) <-> ( w e. Word V /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) ) | 
						
							| 57 | 52 56 | bitri |  |-  ( ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) <-> ( w e. Word V /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) ) | 
						
							| 58 | 57 | a1i |  |-  ( ( G RegUSGraph K /\ P e. V ) -> ( ( ( w e. Word V /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P ) ) <-> ( w e. Word V /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) ) ) | 
						
							| 59 | 10 51 58 | 3bitrd |  |-  ( ( G RegUSGraph K /\ P e. V ) -> ( ( w e. ( 1 WWalksN G ) /\ ( w ` 0 ) = P ) <-> ( w e. Word V /\ ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) ) ) ) | 
						
							| 60 | 59 | rabbidva2 |  |-  ( ( G RegUSGraph K /\ P e. V ) -> { w e. ( 1 WWalksN G ) | ( w ` 0 ) = P } = { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) } ) | 
						
							| 61 | 60 | fveq2d |  |-  ( ( G RegUSGraph K /\ P e. V ) -> ( # ` { w e. ( 1 WWalksN G ) | ( w ` 0 ) = P } ) = ( # ` { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) } ) ) | 
						
							| 62 | 1 | rusgrnumwrdl2 |  |-  ( ( G RegUSGraph K /\ P e. V ) -> ( # ` { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) } ) = K ) | 
						
							| 63 | 61 62 | eqtrd |  |-  ( ( G RegUSGraph K /\ P e. V ) -> ( # ` { w e. ( 1 WWalksN G ) | ( w ` 0 ) = P } ) = K ) |