Metamath Proof Explorer


Theorem rusgrnumwwlkl1

Description: In a k-regular graph, there are k walks (as word) of length 1 starting at each vertex. (Contributed by Alexander van der Vekens, 28-Jul-2018) (Revised by AV, 7-May-2021)

Ref Expression
Hypothesis rusgrnumwwlkl1.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion rusgrnumwwlkl1 ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) → ( ♯ ‘ { 𝑤 ∈ ( 1 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = 𝐾 )

Proof

Step Hyp Ref Expression
1 rusgrnumwwlkl1.v 𝑉 = ( Vtx ‘ 𝐺 )
2 1nn0 1 ∈ ℕ0
3 iswwlksn ( 1 ∈ ℕ0 → ( 𝑤 ∈ ( 1 WWalksN 𝐺 ) ↔ ( 𝑤 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ) ) )
4 2 3 ax-mp ( 𝑤 ∈ ( 1 WWalksN 𝐺 ) ↔ ( 𝑤 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ) )
5 eqid ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 )
6 1 5 iswwlks ( 𝑤 ∈ ( WWalks ‘ 𝐺 ) ↔ ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) )
7 6 anbi1i ( ( 𝑤 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ) ↔ ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ) )
8 4 7 bitri ( 𝑤 ∈ ( 1 WWalksN 𝐺 ) ↔ ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ) )
9 8 a1i ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) → ( 𝑤 ∈ ( 1 WWalksN 𝐺 ) ↔ ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ) ) )
10 9 anbi1d ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) → ( ( 𝑤 ∈ ( 1 WWalksN 𝐺 ) ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ↔ ( ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ) )
11 1p1e2 ( 1 + 1 ) = 2
12 11 eqeq2i ( ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ↔ ( ♯ ‘ 𝑤 ) = 2 )
13 12 a1i ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) → ( ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ↔ ( ♯ ‘ 𝑤 ) = 2 ) )
14 13 anbi2d ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) → ( ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ) ↔ ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) ) )
15 3anass ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) )
16 15 a1i ( ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) → ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) )
17 fveq2 ( 𝑤 = ∅ → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ ∅ ) )
18 hash0 ( ♯ ‘ ∅ ) = 0
19 17 18 eqtrdi ( 𝑤 = ∅ → ( ♯ ‘ 𝑤 ) = 0 )
20 2ne0 2 ≠ 0
21 20 nesymi ¬ 0 = 2
22 eqeq1 ( ( ♯ ‘ 𝑤 ) = 0 → ( ( ♯ ‘ 𝑤 ) = 2 ↔ 0 = 2 ) )
23 21 22 mtbiri ( ( ♯ ‘ 𝑤 ) = 0 → ¬ ( ♯ ‘ 𝑤 ) = 2 )
24 19 23 syl ( 𝑤 = ∅ → ¬ ( ♯ ‘ 𝑤 ) = 2 )
25 24 necon2ai ( ( ♯ ‘ 𝑤 ) = 2 → 𝑤 ≠ ∅ )
26 25 adantl ( ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) → 𝑤 ≠ ∅ )
27 26 biantrurd ( ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) → ( ( 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 𝑤 ≠ ∅ ∧ ( 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) )
28 oveq1 ( ( ♯ ‘ 𝑤 ) = 2 → ( ( ♯ ‘ 𝑤 ) − 1 ) = ( 2 − 1 ) )
29 2m1e1 ( 2 − 1 ) = 1
30 28 29 eqtrdi ( ( ♯ ‘ 𝑤 ) = 2 → ( ( ♯ ‘ 𝑤 ) − 1 ) = 1 )
31 30 oveq2d ( ( ♯ ‘ 𝑤 ) = 2 → ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) = ( 0 ..^ 1 ) )
32 31 adantl ( ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) → ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) = ( 0 ..^ 1 ) )
33 32 raleqdv ( ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ 1 ) { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) )
34 fzo01 ( 0 ..^ 1 ) = { 0 }
35 34 raleqi ( ∀ 𝑖 ∈ ( 0 ..^ 1 ) { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑖 ∈ { 0 } { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) )
36 c0ex 0 ∈ V
37 fveq2 ( 𝑖 = 0 → ( 𝑤𝑖 ) = ( 𝑤 ‘ 0 ) )
38 fv0p1e1 ( 𝑖 = 0 → ( 𝑤 ‘ ( 𝑖 + 1 ) ) = ( 𝑤 ‘ 1 ) )
39 37 38 preq12d ( 𝑖 = 0 → { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } = { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } )
40 39 eleq1d ( 𝑖 = 0 → ( { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) )
41 36 40 ralsn ( ∀ 𝑖 ∈ { 0 } { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) )
42 35 41 bitri ( ∀ 𝑖 ∈ ( 0 ..^ 1 ) { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) )
43 33 42 bitrdi ( ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) )
44 43 anbi2d ( ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) → ( ( 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) )
45 16 27 44 3bitr2d ( ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) → ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) )
46 45 ex ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) → ( ( ♯ ‘ 𝑤 ) = 2 → ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) )
47 46 pm5.32rd ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) → ( ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) ↔ ( ( 𝑤 ∈ Word 𝑉 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) ) )
48 14 47 bitrd ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) → ( ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ) ↔ ( ( 𝑤 ∈ Word 𝑉 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) ) )
49 48 anbi1d ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) → ( ( ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ↔ ( ( ( 𝑤 ∈ Word 𝑉 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ) )
50 anass ( ( ( ( 𝑤 ∈ Word 𝑉 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = 2 ) ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ↔ ( ( 𝑤 ∈ Word 𝑉 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ) )
51 49 50 bitrdi ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) → ( ( ( ( 𝑤 ≠ ∅ ∧ 𝑤 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑤 ) = ( 1 + 1 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ↔ ( ( 𝑤 ∈ Word 𝑉 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ) ) )
52 anass ( ( ( 𝑤 ∈ Word 𝑉 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ ( { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ) ) )
53 ancom ( ( { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ) ↔ ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) )
54 df-3an ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) )
55 53 54 bitr4i ( ( { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ) ↔ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) )
56 55 anbi2i ( ( 𝑤 ∈ Word 𝑉 ∧ ( { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ) ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) )
57 52 56 bitri ( ( ( 𝑤 ∈ Word 𝑉 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) )
58 57 a1i ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) → ( ( ( 𝑤 ∈ Word 𝑉 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) )
59 10 51 58 3bitrd ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) → ( ( 𝑤 ∈ ( 1 WWalksN 𝐺 ) ∧ ( 𝑤 ‘ 0 ) = 𝑃 ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) )
60 59 rabbidva2 ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) → { 𝑤 ∈ ( 1 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } = { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) } )
61 60 fveq2d ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) → ( ♯ ‘ { 𝑤 ∈ ( 1 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = ( ♯ ‘ { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) )
62 1 rusgrnumwrdl2 ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) → ( ♯ ‘ { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) = 𝐾 )
63 61 62 eqtrd ( ( 𝐺 RegUSGraph 𝐾𝑃𝑉 ) → ( ♯ ‘ { 𝑤 ∈ ( 1 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑃 } ) = 𝐾 )