| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rusgrnumwwlkl1.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 3 |  | iswwlksn | ⊢ ( 1  ∈  ℕ0  →  ( 𝑤  ∈  ( 1  WWalksN  𝐺 )  ↔  ( 𝑤  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  ( 1  +  1 ) ) ) ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ ( 𝑤  ∈  ( 1  WWalksN  𝐺 )  ↔  ( 𝑤  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  ( 1  +  1 ) ) ) | 
						
							| 5 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 6 | 1 5 | iswwlks | ⊢ ( 𝑤  ∈  ( WWalks ‘ 𝐺 )  ↔  ( 𝑤  ≠  ∅  ∧  𝑤  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 7 | 6 | anbi1i | ⊢ ( ( 𝑤  ∈  ( WWalks ‘ 𝐺 )  ∧  ( ♯ ‘ 𝑤 )  =  ( 1  +  1 ) )  ↔  ( ( 𝑤  ≠  ∅  ∧  𝑤  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑤 )  =  ( 1  +  1 ) ) ) | 
						
							| 8 | 4 7 | bitri | ⊢ ( 𝑤  ∈  ( 1  WWalksN  𝐺 )  ↔  ( ( 𝑤  ≠  ∅  ∧  𝑤  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑤 )  =  ( 1  +  1 ) ) ) | 
						
							| 9 | 8 | a1i | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  →  ( 𝑤  ∈  ( 1  WWalksN  𝐺 )  ↔  ( ( 𝑤  ≠  ∅  ∧  𝑤  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑤 )  =  ( 1  +  1 ) ) ) ) | 
						
							| 10 | 9 | anbi1d | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  →  ( ( 𝑤  ∈  ( 1  WWalksN  𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝑃 )  ↔  ( ( ( 𝑤  ≠  ∅  ∧  𝑤  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑤 )  =  ( 1  +  1 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑃 ) ) ) | 
						
							| 11 |  | 1p1e2 | ⊢ ( 1  +  1 )  =  2 | 
						
							| 12 | 11 | eqeq2i | ⊢ ( ( ♯ ‘ 𝑤 )  =  ( 1  +  1 )  ↔  ( ♯ ‘ 𝑤 )  =  2 ) | 
						
							| 13 | 12 | a1i | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  →  ( ( ♯ ‘ 𝑤 )  =  ( 1  +  1 )  ↔  ( ♯ ‘ 𝑤 )  =  2 ) ) | 
						
							| 14 | 13 | anbi2d | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  →  ( ( ( 𝑤  ≠  ∅  ∧  𝑤  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑤 )  =  ( 1  +  1 ) )  ↔  ( ( 𝑤  ≠  ∅  ∧  𝑤  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑤 )  =  2 ) ) ) | 
						
							| 15 |  | 3anass | ⊢ ( ( 𝑤  ≠  ∅  ∧  𝑤  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ( 𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 16 | 15 | a1i | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  ∧  ( ♯ ‘ 𝑤 )  =  2 )  →  ( ( 𝑤  ≠  ∅  ∧  𝑤  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ( 𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑤  =  ∅  →  ( ♯ ‘ 𝑤 )  =  ( ♯ ‘ ∅ ) ) | 
						
							| 18 |  | hash0 | ⊢ ( ♯ ‘ ∅ )  =  0 | 
						
							| 19 | 17 18 | eqtrdi | ⊢ ( 𝑤  =  ∅  →  ( ♯ ‘ 𝑤 )  =  0 ) | 
						
							| 20 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 21 | 20 | nesymi | ⊢ ¬  0  =  2 | 
						
							| 22 |  | eqeq1 | ⊢ ( ( ♯ ‘ 𝑤 )  =  0  →  ( ( ♯ ‘ 𝑤 )  =  2  ↔  0  =  2 ) ) | 
						
							| 23 | 21 22 | mtbiri | ⊢ ( ( ♯ ‘ 𝑤 )  =  0  →  ¬  ( ♯ ‘ 𝑤 )  =  2 ) | 
						
							| 24 | 19 23 | syl | ⊢ ( 𝑤  =  ∅  →  ¬  ( ♯ ‘ 𝑤 )  =  2 ) | 
						
							| 25 | 24 | necon2ai | ⊢ ( ( ♯ ‘ 𝑤 )  =  2  →  𝑤  ≠  ∅ ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  ∧  ( ♯ ‘ 𝑤 )  =  2 )  →  𝑤  ≠  ∅ ) | 
						
							| 27 | 26 | biantrurd | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  ∧  ( ♯ ‘ 𝑤 )  =  2 )  →  ( ( 𝑤  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ( 𝑤  ≠  ∅  ∧  ( 𝑤  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) ) | 
						
							| 28 |  | oveq1 | ⊢ ( ( ♯ ‘ 𝑤 )  =  2  →  ( ( ♯ ‘ 𝑤 )  −  1 )  =  ( 2  −  1 ) ) | 
						
							| 29 |  | 2m1e1 | ⊢ ( 2  −  1 )  =  1 | 
						
							| 30 | 28 29 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑤 )  =  2  →  ( ( ♯ ‘ 𝑤 )  −  1 )  =  1 ) | 
						
							| 31 | 30 | oveq2d | ⊢ ( ( ♯ ‘ 𝑤 )  =  2  →  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) )  =  ( 0 ..^ 1 ) ) | 
						
							| 32 | 31 | adantl | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  ∧  ( ♯ ‘ 𝑤 )  =  2 )  →  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) )  =  ( 0 ..^ 1 ) ) | 
						
							| 33 | 32 | raleqdv | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  ∧  ( ♯ ‘ 𝑤 )  =  2 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ↔  ∀ 𝑖  ∈  ( 0 ..^ 1 ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 34 |  | fzo01 | ⊢ ( 0 ..^ 1 )  =  { 0 } | 
						
							| 35 | 34 | raleqi | ⊢ ( ∀ 𝑖  ∈  ( 0 ..^ 1 ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ↔  ∀ 𝑖  ∈  { 0 } { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 36 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 37 |  | fveq2 | ⊢ ( 𝑖  =  0  →  ( 𝑤 ‘ 𝑖 )  =  ( 𝑤 ‘ 0 ) ) | 
						
							| 38 |  | fv0p1e1 | ⊢ ( 𝑖  =  0  →  ( 𝑤 ‘ ( 𝑖  +  1 ) )  =  ( 𝑤 ‘ 1 ) ) | 
						
							| 39 | 37 38 | preq12d | ⊢ ( 𝑖  =  0  →  { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  =  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) } ) | 
						
							| 40 | 39 | eleq1d | ⊢ ( 𝑖  =  0  →  ( { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ↔  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 41 | 36 40 | ralsn | ⊢ ( ∀ 𝑖  ∈  { 0 } { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ↔  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 42 | 35 41 | bitri | ⊢ ( ∀ 𝑖  ∈  ( 0 ..^ 1 ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ↔  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) | 
						
							| 43 | 33 42 | bitrdi | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  ∧  ( ♯ ‘ 𝑤 )  =  2 )  →  ( ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ↔  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 44 | 43 | anbi2d | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  ∧  ( ♯ ‘ 𝑤 )  =  2 )  →  ( ( 𝑤  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ( 𝑤  ∈  Word  𝑉  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 45 | 16 27 44 | 3bitr2d | ⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  ∧  ( ♯ ‘ 𝑤 )  =  2 )  →  ( ( 𝑤  ≠  ∅  ∧  𝑤  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ( 𝑤  ∈  Word  𝑉  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 46 | 45 | ex | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  →  ( ( ♯ ‘ 𝑤 )  =  2  →  ( ( 𝑤  ≠  ∅  ∧  𝑤  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ( 𝑤  ∈  Word  𝑉  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) ) | 
						
							| 47 | 46 | pm5.32rd | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  →  ( ( ( 𝑤  ≠  ∅  ∧  𝑤  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑤 )  =  2 )  ↔  ( ( 𝑤  ∈  Word  𝑉  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑤 )  =  2 ) ) ) | 
						
							| 48 | 14 47 | bitrd | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  →  ( ( ( 𝑤  ≠  ∅  ∧  𝑤  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑤 )  =  ( 1  +  1 ) )  ↔  ( ( 𝑤  ∈  Word  𝑉  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑤 )  =  2 ) ) ) | 
						
							| 49 | 48 | anbi1d | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  →  ( ( ( ( 𝑤  ≠  ∅  ∧  𝑤  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑤 )  =  ( 1  +  1 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑃 )  ↔  ( ( ( 𝑤  ∈  Word  𝑉  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑤 )  =  2 )  ∧  ( 𝑤 ‘ 0 )  =  𝑃 ) ) ) | 
						
							| 50 |  | anass | ⊢ ( ( ( ( 𝑤  ∈  Word  𝑉  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑤 )  =  2 )  ∧  ( 𝑤 ‘ 0 )  =  𝑃 )  ↔  ( ( 𝑤  ∈  Word  𝑉  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃 ) ) ) | 
						
							| 51 | 49 50 | bitrdi | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  →  ( ( ( ( 𝑤  ≠  ∅  ∧  𝑤  ∈  Word  𝑉  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑤 )  −  1 ) ) { ( 𝑤 ‘ 𝑖 ) ,  ( 𝑤 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ♯ ‘ 𝑤 )  =  ( 1  +  1 ) )  ∧  ( 𝑤 ‘ 0 )  =  𝑃 )  ↔  ( ( 𝑤  ∈  Word  𝑉  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃 ) ) ) ) | 
						
							| 52 |  | anass | ⊢ ( ( ( 𝑤  ∈  Word  𝑉  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃 ) )  ↔  ( 𝑤  ∈  Word  𝑉  ∧  ( { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 )  ∧  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃 ) ) ) ) | 
						
							| 53 |  | ancom | ⊢ ( ( { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 )  ∧  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃 ) )  ↔  ( ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃 )  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 54 |  | df-3an | ⊢ ( ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  ↔  ( ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃 )  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 55 | 53 54 | bitr4i | ⊢ ( ( { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 )  ∧  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃 ) )  ↔  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 56 | 55 | anbi2i | ⊢ ( ( 𝑤  ∈  Word  𝑉  ∧  ( { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 )  ∧  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃 ) ) )  ↔  ( 𝑤  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 57 | 52 56 | bitri | ⊢ ( ( ( 𝑤  ∈  Word  𝑉  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃 ) )  ↔  ( 𝑤  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 58 | 57 | a1i | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  →  ( ( ( 𝑤  ∈  Word  𝑉  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) )  ∧  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃 ) )  ↔  ( 𝑤  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) ) | 
						
							| 59 | 10 51 58 | 3bitrd | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  →  ( ( 𝑤  ∈  ( 1  WWalksN  𝐺 )  ∧  ( 𝑤 ‘ 0 )  =  𝑃 )  ↔  ( 𝑤  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) ) | 
						
							| 60 | 59 | rabbidva2 | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  →  { 𝑤  ∈  ( 1  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 }  =  { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) } ) | 
						
							| 61 | 60 | fveq2d | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  →  ( ♯ ‘ { 𝑤  ∈  ( 1  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  ( ♯ ‘ { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) } ) ) | 
						
							| 62 | 1 | rusgrnumwrdl2 | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  →  ( ♯ ‘ { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) } )  =  𝐾 ) | 
						
							| 63 | 61 62 | eqtrd | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  →  ( ♯ ‘ { 𝑤  ∈  ( 1  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑃 } )  =  𝐾 ) |