Step |
Hyp |
Ref |
Expression |
1 |
|
rusgrnumwrdl2.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
3 |
2
|
wrdexi |
⊢ Word 𝑉 ∈ V |
4 |
3
|
rabex |
⊢ { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) } ∈ V |
5 |
2
|
a1i |
⊢ ( 𝐺 RegUSGraph 𝐾 → 𝑉 ∈ V ) |
6 |
|
wrd2f1tovbij |
⊢ ( ( 𝑉 ∈ V ∧ 𝑃 ∈ 𝑉 ) → ∃ 𝑓 𝑓 : { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) } –1-1-onto→ { 𝑠 ∈ 𝑉 ∣ { 𝑃 , 𝑠 } ∈ ( Edg ‘ 𝐺 ) } ) |
7 |
5 6
|
sylan |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) → ∃ 𝑓 𝑓 : { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) } –1-1-onto→ { 𝑠 ∈ 𝑉 ∣ { 𝑃 , 𝑠 } ∈ ( Edg ‘ 𝐺 ) } ) |
8 |
|
hasheqf1oi |
⊢ ( { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) } ∈ V → ( ∃ 𝑓 𝑓 : { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) } –1-1-onto→ { 𝑠 ∈ 𝑉 ∣ { 𝑃 , 𝑠 } ∈ ( Edg ‘ 𝐺 ) } → ( ♯ ‘ { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) = ( ♯ ‘ { 𝑠 ∈ 𝑉 ∣ { 𝑃 , 𝑠 } ∈ ( Edg ‘ 𝐺 ) } ) ) ) |
9 |
4 7 8
|
mpsyl |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) → ( ♯ ‘ { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) = ( ♯ ‘ { 𝑠 ∈ 𝑉 ∣ { 𝑃 , 𝑠 } ∈ ( Edg ‘ 𝐺 ) } ) ) |
10 |
1
|
rusgrpropadjvtx |
⊢ ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑝 ∈ 𝑉 ( ♯ ‘ { 𝑠 ∈ 𝑉 ∣ { 𝑝 , 𝑠 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) ) |
11 |
|
preq1 |
⊢ ( 𝑝 = 𝑃 → { 𝑝 , 𝑠 } = { 𝑃 , 𝑠 } ) |
12 |
11
|
eleq1d |
⊢ ( 𝑝 = 𝑃 → ( { 𝑝 , 𝑠 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝑃 , 𝑠 } ∈ ( Edg ‘ 𝐺 ) ) ) |
13 |
12
|
rabbidv |
⊢ ( 𝑝 = 𝑃 → { 𝑠 ∈ 𝑉 ∣ { 𝑝 , 𝑠 } ∈ ( Edg ‘ 𝐺 ) } = { 𝑠 ∈ 𝑉 ∣ { 𝑃 , 𝑠 } ∈ ( Edg ‘ 𝐺 ) } ) |
14 |
13
|
fveqeq2d |
⊢ ( 𝑝 = 𝑃 → ( ( ♯ ‘ { 𝑠 ∈ 𝑉 ∣ { 𝑝 , 𝑠 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ↔ ( ♯ ‘ { 𝑠 ∈ 𝑉 ∣ { 𝑃 , 𝑠 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) ) |
15 |
14
|
rspccv |
⊢ ( ∀ 𝑝 ∈ 𝑉 ( ♯ ‘ { 𝑠 ∈ 𝑉 ∣ { 𝑝 , 𝑠 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 → ( 𝑃 ∈ 𝑉 → ( ♯ ‘ { 𝑠 ∈ 𝑉 ∣ { 𝑃 , 𝑠 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) ) |
16 |
15
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑝 ∈ 𝑉 ( ♯ ‘ { 𝑠 ∈ 𝑉 ∣ { 𝑝 , 𝑠 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) → ( 𝑃 ∈ 𝑉 → ( ♯ ‘ { 𝑠 ∈ 𝑉 ∣ { 𝑃 , 𝑠 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) ) |
17 |
10 16
|
syl |
⊢ ( 𝐺 RegUSGraph 𝐾 → ( 𝑃 ∈ 𝑉 → ( ♯ ‘ { 𝑠 ∈ 𝑉 ∣ { 𝑃 , 𝑠 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) ) |
18 |
17
|
imp |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) → ( ♯ ‘ { 𝑠 ∈ 𝑉 ∣ { 𝑃 , 𝑠 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) |
19 |
9 18
|
eqtrd |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑃 ∈ 𝑉 ) → ( ♯ ‘ { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ ( 𝑤 ‘ 0 ) = 𝑃 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) } ) = 𝐾 ) |