| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rusgrnumwrdl2.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 3 | 2 | wrdexi | ⊢ Word  𝑉  ∈  V | 
						
							| 4 | 3 | rabex | ⊢ { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) }  ∈  V | 
						
							| 5 | 2 | a1i | ⊢ ( 𝐺  RegUSGraph  𝐾  →  𝑉  ∈  V ) | 
						
							| 6 |  | wrd2f1tovbij | ⊢ ( ( 𝑉  ∈  V  ∧  𝑃  ∈  𝑉 )  →  ∃ 𝑓 𝑓 : { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) } –1-1-onto→ { 𝑠  ∈  𝑉  ∣  { 𝑃 ,  𝑠 }  ∈  ( Edg ‘ 𝐺 ) } ) | 
						
							| 7 | 5 6 | sylan | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  →  ∃ 𝑓 𝑓 : { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) } –1-1-onto→ { 𝑠  ∈  𝑉  ∣  { 𝑃 ,  𝑠 }  ∈  ( Edg ‘ 𝐺 ) } ) | 
						
							| 8 |  | hasheqf1oi | ⊢ ( { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) }  ∈  V  →  ( ∃ 𝑓 𝑓 : { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) } –1-1-onto→ { 𝑠  ∈  𝑉  ∣  { 𝑃 ,  𝑠 }  ∈  ( Edg ‘ 𝐺 ) }  →  ( ♯ ‘ { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) } )  =  ( ♯ ‘ { 𝑠  ∈  𝑉  ∣  { 𝑃 ,  𝑠 }  ∈  ( Edg ‘ 𝐺 ) } ) ) ) | 
						
							| 9 | 4 7 8 | mpsyl | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  →  ( ♯ ‘ { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) } )  =  ( ♯ ‘ { 𝑠  ∈  𝑉  ∣  { 𝑃 ,  𝑠 }  ∈  ( Edg ‘ 𝐺 ) } ) ) | 
						
							| 10 | 1 | rusgrpropadjvtx | ⊢ ( 𝐺  RegUSGraph  𝐾  →  ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑝  ∈  𝑉 ( ♯ ‘ { 𝑠  ∈  𝑉  ∣  { 𝑝 ,  𝑠 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 ) ) | 
						
							| 11 |  | preq1 | ⊢ ( 𝑝  =  𝑃  →  { 𝑝 ,  𝑠 }  =  { 𝑃 ,  𝑠 } ) | 
						
							| 12 | 11 | eleq1d | ⊢ ( 𝑝  =  𝑃  →  ( { 𝑝 ,  𝑠 }  ∈  ( Edg ‘ 𝐺 )  ↔  { 𝑃 ,  𝑠 }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 13 | 12 | rabbidv | ⊢ ( 𝑝  =  𝑃  →  { 𝑠  ∈  𝑉  ∣  { 𝑝 ,  𝑠 }  ∈  ( Edg ‘ 𝐺 ) }  =  { 𝑠  ∈  𝑉  ∣  { 𝑃 ,  𝑠 }  ∈  ( Edg ‘ 𝐺 ) } ) | 
						
							| 14 | 13 | fveqeq2d | ⊢ ( 𝑝  =  𝑃  →  ( ( ♯ ‘ { 𝑠  ∈  𝑉  ∣  { 𝑝 ,  𝑠 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾  ↔  ( ♯ ‘ { 𝑠  ∈  𝑉  ∣  { 𝑃 ,  𝑠 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 ) ) | 
						
							| 15 | 14 | rspccv | ⊢ ( ∀ 𝑝  ∈  𝑉 ( ♯ ‘ { 𝑠  ∈  𝑉  ∣  { 𝑝 ,  𝑠 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾  →  ( 𝑃  ∈  𝑉  →  ( ♯ ‘ { 𝑠  ∈  𝑉  ∣  { 𝑃 ,  𝑠 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 ) ) | 
						
							| 16 | 15 | 3ad2ant3 | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑝  ∈  𝑉 ( ♯ ‘ { 𝑠  ∈  𝑉  ∣  { 𝑝 ,  𝑠 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 )  →  ( 𝑃  ∈  𝑉  →  ( ♯ ‘ { 𝑠  ∈  𝑉  ∣  { 𝑃 ,  𝑠 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 ) ) | 
						
							| 17 | 10 16 | syl | ⊢ ( 𝐺  RegUSGraph  𝐾  →  ( 𝑃  ∈  𝑉  →  ( ♯ ‘ { 𝑠  ∈  𝑉  ∣  { 𝑃 ,  𝑠 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 ) ) | 
						
							| 18 | 17 | imp | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  →  ( ♯ ‘ { 𝑠  ∈  𝑉  ∣  { 𝑃 ,  𝑠 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 ) | 
						
							| 19 | 9 18 | eqtrd | ⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑃  ∈  𝑉 )  →  ( ♯ ‘ { 𝑤  ∈  Word  𝑉  ∣  ( ( ♯ ‘ 𝑤 )  =  2  ∧  ( 𝑤 ‘ 0 )  =  𝑃  ∧  { ( 𝑤 ‘ 0 ) ,  ( 𝑤 ‘ 1 ) }  ∈  ( Edg ‘ 𝐺 ) ) } )  =  𝐾 ) |