Metamath Proof Explorer


Theorem rusgrpropadjvtx

Description: The properties of a k-regular simple graph expressed with adjacent vertices. (Contributed by Alexander van der Vekens, 26-Jul-2018) (Revised by AV, 27-Dec-2020)

Ref Expression
Hypothesis rusgrpropnb.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion rusgrpropadjvtx ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ♯ ‘ { 𝑘𝑉 ∣ { 𝑣 , 𝑘 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) )

Proof

Step Hyp Ref Expression
1 rusgrpropnb.v 𝑉 = ( Vtx ‘ 𝐺 )
2 1 rusgrpropnb ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) )
3 simp1 ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) → 𝐺 ∈ USGraph )
4 simp2 ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) → 𝐾 ∈ ℕ0* )
5 eqid ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 )
6 1 5 nbusgrvtx ( ( 𝐺 ∈ USGraph ∧ 𝑣𝑉 ) → ( 𝐺 NeighbVtx 𝑣 ) = { 𝑘𝑉 ∣ { 𝑣 , 𝑘 } ∈ ( Edg ‘ 𝐺 ) } )
7 6 fveq2d ( ( 𝐺 ∈ USGraph ∧ 𝑣𝑉 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = ( ♯ ‘ { 𝑘𝑉 ∣ { 𝑣 , 𝑘 } ∈ ( Edg ‘ 𝐺 ) } ) )
8 7 eqcomd ( ( 𝐺 ∈ USGraph ∧ 𝑣𝑉 ) → ( ♯ ‘ { 𝑘𝑉 ∣ { 𝑣 , 𝑘 } ∈ ( Edg ‘ 𝐺 ) } ) = ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) )
9 8 adantr ( ( ( 𝐺 ∈ USGraph ∧ 𝑣𝑉 ) ∧ ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) → ( ♯ ‘ { 𝑘𝑉 ∣ { 𝑣 , 𝑘 } ∈ ( Edg ‘ 𝐺 ) } ) = ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) )
10 simpr ( ( ( 𝐺 ∈ USGraph ∧ 𝑣𝑉 ) ∧ ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) → ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 )
11 9 10 eqtrd ( ( ( 𝐺 ∈ USGraph ∧ 𝑣𝑉 ) ∧ ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) → ( ♯ ‘ { 𝑘𝑉 ∣ { 𝑣 , 𝑘 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 )
12 11 ex ( ( 𝐺 ∈ USGraph ∧ 𝑣𝑉 ) → ( ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 → ( ♯ ‘ { 𝑘𝑉 ∣ { 𝑣 , 𝑘 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) )
13 12 ralimdva ( 𝐺 ∈ USGraph → ( ∀ 𝑣𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 → ∀ 𝑣𝑉 ( ♯ ‘ { 𝑘𝑉 ∣ { 𝑣 , 𝑘 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) )
14 13 imp ( ( 𝐺 ∈ USGraph ∧ ∀ 𝑣𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) → ∀ 𝑣𝑉 ( ♯ ‘ { 𝑘𝑉 ∣ { 𝑣 , 𝑘 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 )
15 14 3adant2 ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) → ∀ 𝑣𝑉 ( ♯ ‘ { 𝑘𝑉 ∣ { 𝑣 , 𝑘 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 )
16 3 4 15 3jca ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ♯ ‘ ( 𝐺 NeighbVtx 𝑣 ) ) = 𝐾 ) → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ♯ ‘ { 𝑘𝑉 ∣ { 𝑣 , 𝑘 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) )
17 2 16 syl ( 𝐺 RegUSGraph 𝐾 → ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( ♯ ‘ { 𝑘𝑉 ∣ { 𝑣 , 𝑘 } ∈ ( Edg ‘ 𝐺 ) } ) = 𝐾 ) )