| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rusgrpropnb.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 | 1 | rusgrpropnb | ⊢ ( 𝐺  RegUSGraph  𝐾  →  ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  𝐾 ) ) | 
						
							| 3 |  | simp1 | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  𝐾 )  →  𝐺  ∈  USGraph ) | 
						
							| 4 |  | simp2 | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  𝐾 )  →  𝐾  ∈  ℕ0* ) | 
						
							| 5 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 6 | 1 5 | nbusgrvtx | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑣  ∈  𝑉 )  →  ( 𝐺  NeighbVtx  𝑣 )  =  { 𝑘  ∈  𝑉  ∣  { 𝑣 ,  𝑘 }  ∈  ( Edg ‘ 𝐺 ) } ) | 
						
							| 7 | 6 | fveq2d | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑣  ∈  𝑉 )  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  ( ♯ ‘ { 𝑘  ∈  𝑉  ∣  { 𝑣 ,  𝑘 }  ∈  ( Edg ‘ 𝐺 ) } ) ) | 
						
							| 8 | 7 | eqcomd | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑣  ∈  𝑉 )  →  ( ♯ ‘ { 𝑘  ∈  𝑉  ∣  { 𝑣 ,  𝑘 }  ∈  ( Edg ‘ 𝐺 ) } )  =  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝑣  ∈  𝑉 )  ∧  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  𝐾 )  →  ( ♯ ‘ { 𝑘  ∈  𝑉  ∣  { 𝑣 ,  𝑘 }  ∈  ( Edg ‘ 𝐺 ) } )  =  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) ) ) | 
						
							| 10 |  | simpr | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝑣  ∈  𝑉 )  ∧  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  𝐾 )  →  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  𝐾 ) | 
						
							| 11 | 9 10 | eqtrd | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  𝑣  ∈  𝑉 )  ∧  ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  𝐾 )  →  ( ♯ ‘ { 𝑘  ∈  𝑉  ∣  { 𝑣 ,  𝑘 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 ) | 
						
							| 12 | 11 | ex | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑣  ∈  𝑉 )  →  ( ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  𝐾  →  ( ♯ ‘ { 𝑘  ∈  𝑉  ∣  { 𝑣 ,  𝑘 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 ) ) | 
						
							| 13 | 12 | ralimdva | ⊢ ( 𝐺  ∈  USGraph  →  ( ∀ 𝑣  ∈  𝑉 ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  𝐾  →  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ { 𝑘  ∈  𝑉  ∣  { 𝑣 ,  𝑘 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 ) ) | 
						
							| 14 | 13 | imp | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  𝐾 )  →  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ { 𝑘  ∈  𝑉  ∣  { 𝑣 ,  𝑘 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 ) | 
						
							| 15 | 14 | 3adant2 | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  𝐾 )  →  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ { 𝑘  ∈  𝑉  ∣  { 𝑣 ,  𝑘 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 ) | 
						
							| 16 | 3 4 15 | 3jca | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ ( 𝐺  NeighbVtx  𝑣 ) )  =  𝐾 )  →  ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ { 𝑘  ∈  𝑉  ∣  { 𝑣 ,  𝑘 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 ) ) | 
						
							| 17 | 2 16 | syl | ⊢ ( 𝐺  RegUSGraph  𝐾  →  ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( ♯ ‘ { 𝑘  ∈  𝑉  ∣  { 𝑣 ,  𝑘 }  ∈  ( Edg ‘ 𝐺 ) } )  =  𝐾 ) ) |