| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rusgrpropnb.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 | 1 | rusgrpropnb |  |-  ( G RegUSGraph K -> ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( # ` ( G NeighbVtx v ) ) = K ) ) | 
						
							| 3 |  | simp1 |  |-  ( ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( # ` ( G NeighbVtx v ) ) = K ) -> G e. USGraph ) | 
						
							| 4 |  | simp2 |  |-  ( ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( # ` ( G NeighbVtx v ) ) = K ) -> K e. NN0* ) | 
						
							| 5 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 6 | 1 5 | nbusgrvtx |  |-  ( ( G e. USGraph /\ v e. V ) -> ( G NeighbVtx v ) = { k e. V | { v , k } e. ( Edg ` G ) } ) | 
						
							| 7 | 6 | fveq2d |  |-  ( ( G e. USGraph /\ v e. V ) -> ( # ` ( G NeighbVtx v ) ) = ( # ` { k e. V | { v , k } e. ( Edg ` G ) } ) ) | 
						
							| 8 | 7 | eqcomd |  |-  ( ( G e. USGraph /\ v e. V ) -> ( # ` { k e. V | { v , k } e. ( Edg ` G ) } ) = ( # ` ( G NeighbVtx v ) ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ( G e. USGraph /\ v e. V ) /\ ( # ` ( G NeighbVtx v ) ) = K ) -> ( # ` { k e. V | { v , k } e. ( Edg ` G ) } ) = ( # ` ( G NeighbVtx v ) ) ) | 
						
							| 10 |  | simpr |  |-  ( ( ( G e. USGraph /\ v e. V ) /\ ( # ` ( G NeighbVtx v ) ) = K ) -> ( # ` ( G NeighbVtx v ) ) = K ) | 
						
							| 11 | 9 10 | eqtrd |  |-  ( ( ( G e. USGraph /\ v e. V ) /\ ( # ` ( G NeighbVtx v ) ) = K ) -> ( # ` { k e. V | { v , k } e. ( Edg ` G ) } ) = K ) | 
						
							| 12 | 11 | ex |  |-  ( ( G e. USGraph /\ v e. V ) -> ( ( # ` ( G NeighbVtx v ) ) = K -> ( # ` { k e. V | { v , k } e. ( Edg ` G ) } ) = K ) ) | 
						
							| 13 | 12 | ralimdva |  |-  ( G e. USGraph -> ( A. v e. V ( # ` ( G NeighbVtx v ) ) = K -> A. v e. V ( # ` { k e. V | { v , k } e. ( Edg ` G ) } ) = K ) ) | 
						
							| 14 | 13 | imp |  |-  ( ( G e. USGraph /\ A. v e. V ( # ` ( G NeighbVtx v ) ) = K ) -> A. v e. V ( # ` { k e. V | { v , k } e. ( Edg ` G ) } ) = K ) | 
						
							| 15 | 14 | 3adant2 |  |-  ( ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( # ` ( G NeighbVtx v ) ) = K ) -> A. v e. V ( # ` { k e. V | { v , k } e. ( Edg ` G ) } ) = K ) | 
						
							| 16 | 3 4 15 | 3jca |  |-  ( ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( # ` ( G NeighbVtx v ) ) = K ) -> ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( # ` { k e. V | { v , k } e. ( Edg ` G ) } ) = K ) ) | 
						
							| 17 | 2 16 | syl |  |-  ( G RegUSGraph K -> ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( # ` { k e. V | { v , k } e. ( Edg ` G ) } ) = K ) ) |