Step |
Hyp |
Ref |
Expression |
1 |
|
rusgrpropnb.v |
|- V = ( Vtx ` G ) |
2 |
1
|
rusgrpropnb |
|- ( G RegUSGraph K -> ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( # ` ( G NeighbVtx v ) ) = K ) ) |
3 |
|
simp1 |
|- ( ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( # ` ( G NeighbVtx v ) ) = K ) -> G e. USGraph ) |
4 |
|
simp2 |
|- ( ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( # ` ( G NeighbVtx v ) ) = K ) -> K e. NN0* ) |
5 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
6 |
1 5
|
nbusgrvtx |
|- ( ( G e. USGraph /\ v e. V ) -> ( G NeighbVtx v ) = { k e. V | { v , k } e. ( Edg ` G ) } ) |
7 |
6
|
fveq2d |
|- ( ( G e. USGraph /\ v e. V ) -> ( # ` ( G NeighbVtx v ) ) = ( # ` { k e. V | { v , k } e. ( Edg ` G ) } ) ) |
8 |
7
|
eqcomd |
|- ( ( G e. USGraph /\ v e. V ) -> ( # ` { k e. V | { v , k } e. ( Edg ` G ) } ) = ( # ` ( G NeighbVtx v ) ) ) |
9 |
8
|
adantr |
|- ( ( ( G e. USGraph /\ v e. V ) /\ ( # ` ( G NeighbVtx v ) ) = K ) -> ( # ` { k e. V | { v , k } e. ( Edg ` G ) } ) = ( # ` ( G NeighbVtx v ) ) ) |
10 |
|
simpr |
|- ( ( ( G e. USGraph /\ v e. V ) /\ ( # ` ( G NeighbVtx v ) ) = K ) -> ( # ` ( G NeighbVtx v ) ) = K ) |
11 |
9 10
|
eqtrd |
|- ( ( ( G e. USGraph /\ v e. V ) /\ ( # ` ( G NeighbVtx v ) ) = K ) -> ( # ` { k e. V | { v , k } e. ( Edg ` G ) } ) = K ) |
12 |
11
|
ex |
|- ( ( G e. USGraph /\ v e. V ) -> ( ( # ` ( G NeighbVtx v ) ) = K -> ( # ` { k e. V | { v , k } e. ( Edg ` G ) } ) = K ) ) |
13 |
12
|
ralimdva |
|- ( G e. USGraph -> ( A. v e. V ( # ` ( G NeighbVtx v ) ) = K -> A. v e. V ( # ` { k e. V | { v , k } e. ( Edg ` G ) } ) = K ) ) |
14 |
13
|
imp |
|- ( ( G e. USGraph /\ A. v e. V ( # ` ( G NeighbVtx v ) ) = K ) -> A. v e. V ( # ` { k e. V | { v , k } e. ( Edg ` G ) } ) = K ) |
15 |
14
|
3adant2 |
|- ( ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( # ` ( G NeighbVtx v ) ) = K ) -> A. v e. V ( # ` { k e. V | { v , k } e. ( Edg ` G ) } ) = K ) |
16 |
3 4 15
|
3jca |
|- ( ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( # ` ( G NeighbVtx v ) ) = K ) -> ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( # ` { k e. V | { v , k } e. ( Edg ` G ) } ) = K ) ) |
17 |
2 16
|
syl |
|- ( G RegUSGraph K -> ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( # ` { k e. V | { v , k } e. ( Edg ` G ) } ) = K ) ) |