Metamath Proof Explorer


Theorem rusgrpropadjvtx

Description: The properties of a k-regular simple graph expressed with adjacent vertices. (Contributed by Alexander van der Vekens, 26-Jul-2018) (Revised by AV, 27-Dec-2020)

Ref Expression
Hypothesis rusgrpropnb.v V = Vtx G
Assertion rusgrpropadjvtx G RegUSGraph K G USGraph K 0 * v V k V | v k Edg G = K

Proof

Step Hyp Ref Expression
1 rusgrpropnb.v V = Vtx G
2 1 rusgrpropnb G RegUSGraph K G USGraph K 0 * v V G NeighbVtx v = K
3 simp1 G USGraph K 0 * v V G NeighbVtx v = K G USGraph
4 simp2 G USGraph K 0 * v V G NeighbVtx v = K K 0 *
5 eqid Edg G = Edg G
6 1 5 nbusgrvtx G USGraph v V G NeighbVtx v = k V | v k Edg G
7 6 fveq2d G USGraph v V G NeighbVtx v = k V | v k Edg G
8 7 eqcomd G USGraph v V k V | v k Edg G = G NeighbVtx v
9 8 adantr G USGraph v V G NeighbVtx v = K k V | v k Edg G = G NeighbVtx v
10 simpr G USGraph v V G NeighbVtx v = K G NeighbVtx v = K
11 9 10 eqtrd G USGraph v V G NeighbVtx v = K k V | v k Edg G = K
12 11 ex G USGraph v V G NeighbVtx v = K k V | v k Edg G = K
13 12 ralimdva G USGraph v V G NeighbVtx v = K v V k V | v k Edg G = K
14 13 imp G USGraph v V G NeighbVtx v = K v V k V | v k Edg G = K
15 14 3adant2 G USGraph K 0 * v V G NeighbVtx v = K v V k V | v k Edg G = K
16 3 4 15 3jca G USGraph K 0 * v V G NeighbVtx v = K G USGraph K 0 * v V k V | v k Edg G = K
17 2 16 syl G RegUSGraph K G USGraph K 0 * v V k V | v k Edg G = K