| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rusgrnumwrdl2.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 | 1 | fvexi |  |-  V e. _V | 
						
							| 3 | 2 | wrdexi |  |-  Word V e. _V | 
						
							| 4 | 3 | rabex |  |-  { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) } e. _V | 
						
							| 5 | 2 | a1i |  |-  ( G RegUSGraph K -> V e. _V ) | 
						
							| 6 |  | wrd2f1tovbij |  |-  ( ( V e. _V /\ P e. V ) -> E. f f : { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) } -1-1-onto-> { s e. V | { P , s } e. ( Edg ` G ) } ) | 
						
							| 7 | 5 6 | sylan |  |-  ( ( G RegUSGraph K /\ P e. V ) -> E. f f : { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) } -1-1-onto-> { s e. V | { P , s } e. ( Edg ` G ) } ) | 
						
							| 8 |  | hasheqf1oi |  |-  ( { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) } e. _V -> ( E. f f : { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) } -1-1-onto-> { s e. V | { P , s } e. ( Edg ` G ) } -> ( # ` { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) } ) = ( # ` { s e. V | { P , s } e. ( Edg ` G ) } ) ) ) | 
						
							| 9 | 4 7 8 | mpsyl |  |-  ( ( G RegUSGraph K /\ P e. V ) -> ( # ` { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) } ) = ( # ` { s e. V | { P , s } e. ( Edg ` G ) } ) ) | 
						
							| 10 | 1 | rusgrpropadjvtx |  |-  ( G RegUSGraph K -> ( G e. USGraph /\ K e. NN0* /\ A. p e. V ( # ` { s e. V | { p , s } e. ( Edg ` G ) } ) = K ) ) | 
						
							| 11 |  | preq1 |  |-  ( p = P -> { p , s } = { P , s } ) | 
						
							| 12 | 11 | eleq1d |  |-  ( p = P -> ( { p , s } e. ( Edg ` G ) <-> { P , s } e. ( Edg ` G ) ) ) | 
						
							| 13 | 12 | rabbidv |  |-  ( p = P -> { s e. V | { p , s } e. ( Edg ` G ) } = { s e. V | { P , s } e. ( Edg ` G ) } ) | 
						
							| 14 | 13 | fveqeq2d |  |-  ( p = P -> ( ( # ` { s e. V | { p , s } e. ( Edg ` G ) } ) = K <-> ( # ` { s e. V | { P , s } e. ( Edg ` G ) } ) = K ) ) | 
						
							| 15 | 14 | rspccv |  |-  ( A. p e. V ( # ` { s e. V | { p , s } e. ( Edg ` G ) } ) = K -> ( P e. V -> ( # ` { s e. V | { P , s } e. ( Edg ` G ) } ) = K ) ) | 
						
							| 16 | 15 | 3ad2ant3 |  |-  ( ( G e. USGraph /\ K e. NN0* /\ A. p e. V ( # ` { s e. V | { p , s } e. ( Edg ` G ) } ) = K ) -> ( P e. V -> ( # ` { s e. V | { P , s } e. ( Edg ` G ) } ) = K ) ) | 
						
							| 17 | 10 16 | syl |  |-  ( G RegUSGraph K -> ( P e. V -> ( # ` { s e. V | { P , s } e. ( Edg ` G ) } ) = K ) ) | 
						
							| 18 | 17 | imp |  |-  ( ( G RegUSGraph K /\ P e. V ) -> ( # ` { s e. V | { P , s } e. ( Edg ` G ) } ) = K ) | 
						
							| 19 | 9 18 | eqtrd |  |-  ( ( G RegUSGraph K /\ P e. V ) -> ( # ` { w e. Word V | ( ( # ` w ) = 2 /\ ( w ` 0 ) = P /\ { ( w ` 0 ) , ( w ` 1 ) } e. ( Edg ` G ) ) } ) = K ) |