| Step | Hyp | Ref | Expression | 
						
							| 1 |  | r19.26 |  |-  ( A. v e. V ( ( # ` A ) = K /\ A = (/) ) <-> ( A. v e. V ( # ` A ) = K /\ A. v e. V A = (/) ) ) | 
						
							| 2 |  | fveqeq2 |  |-  ( A = (/) -> ( ( # ` A ) = K <-> ( # ` (/) ) = K ) ) | 
						
							| 3 | 2 | biimpac |  |-  ( ( ( # ` A ) = K /\ A = (/) ) -> ( # ` (/) ) = K ) | 
						
							| 4 | 3 | ralimi |  |-  ( A. v e. V ( ( # ` A ) = K /\ A = (/) ) -> A. v e. V ( # ` (/) ) = K ) | 
						
							| 5 |  | hash1n0 |  |-  ( ( V e. W /\ ( # ` V ) = 1 ) -> V =/= (/) ) | 
						
							| 6 |  | rspn0 |  |-  ( V =/= (/) -> ( A. v e. V ( # ` (/) ) = K -> ( # ` (/) ) = K ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( V e. W /\ ( # ` V ) = 1 ) -> ( A. v e. V ( # ` (/) ) = K -> ( # ` (/) ) = K ) ) | 
						
							| 8 |  | hash0 |  |-  ( # ` (/) ) = 0 | 
						
							| 9 |  | eqeq1 |  |-  ( ( # ` (/) ) = K -> ( ( # ` (/) ) = 0 <-> K = 0 ) ) | 
						
							| 10 | 8 9 | mpbii |  |-  ( ( # ` (/) ) = K -> K = 0 ) | 
						
							| 11 | 7 10 | syl6com |  |-  ( A. v e. V ( # ` (/) ) = K -> ( ( V e. W /\ ( # ` V ) = 1 ) -> K = 0 ) ) | 
						
							| 12 | 4 11 | syl |  |-  ( A. v e. V ( ( # ` A ) = K /\ A = (/) ) -> ( ( V e. W /\ ( # ` V ) = 1 ) -> K = 0 ) ) | 
						
							| 13 | 1 12 | sylbir |  |-  ( ( A. v e. V ( # ` A ) = K /\ A. v e. V A = (/) ) -> ( ( V e. W /\ ( # ` V ) = 1 ) -> K = 0 ) ) | 
						
							| 14 | 13 | imp |  |-  ( ( ( A. v e. V ( # ` A ) = K /\ A. v e. V A = (/) ) /\ ( V e. W /\ ( # ` V ) = 1 ) ) -> K = 0 ) |