Step |
Hyp |
Ref |
Expression |
1 |
|
r19.26 |
|- ( A. v e. V ( ( # ` A ) = K /\ A = (/) ) <-> ( A. v e. V ( # ` A ) = K /\ A. v e. V A = (/) ) ) |
2 |
|
fveqeq2 |
|- ( A = (/) -> ( ( # ` A ) = K <-> ( # ` (/) ) = K ) ) |
3 |
2
|
biimpac |
|- ( ( ( # ` A ) = K /\ A = (/) ) -> ( # ` (/) ) = K ) |
4 |
3
|
ralimi |
|- ( A. v e. V ( ( # ` A ) = K /\ A = (/) ) -> A. v e. V ( # ` (/) ) = K ) |
5 |
|
hash1n0 |
|- ( ( V e. W /\ ( # ` V ) = 1 ) -> V =/= (/) ) |
6 |
|
rspn0 |
|- ( V =/= (/) -> ( A. v e. V ( # ` (/) ) = K -> ( # ` (/) ) = K ) ) |
7 |
5 6
|
syl |
|- ( ( V e. W /\ ( # ` V ) = 1 ) -> ( A. v e. V ( # ` (/) ) = K -> ( # ` (/) ) = K ) ) |
8 |
|
hash0 |
|- ( # ` (/) ) = 0 |
9 |
|
eqeq1 |
|- ( ( # ` (/) ) = K -> ( ( # ` (/) ) = 0 <-> K = 0 ) ) |
10 |
8 9
|
mpbii |
|- ( ( # ` (/) ) = K -> K = 0 ) |
11 |
7 10
|
syl6com |
|- ( A. v e. V ( # ` (/) ) = K -> ( ( V e. W /\ ( # ` V ) = 1 ) -> K = 0 ) ) |
12 |
4 11
|
syl |
|- ( A. v e. V ( ( # ` A ) = K /\ A = (/) ) -> ( ( V e. W /\ ( # ` V ) = 1 ) -> K = 0 ) ) |
13 |
1 12
|
sylbir |
|- ( ( A. v e. V ( # ` A ) = K /\ A. v e. V A = (/) ) -> ( ( V e. W /\ ( # ` V ) = 1 ) -> K = 0 ) ) |
14 |
13
|
imp |
|- ( ( ( A. v e. V ( # ` A ) = K /\ A. v e. V A = (/) ) /\ ( V e. W /\ ( # ` V ) = 1 ) ) -> K = 0 ) |