| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nbgr1vtx |  |-  ( ( # ` ( Vtx ` G ) ) = 1 -> ( G NeighbVtx v ) = (/) ) | 
						
							| 2 | 1 | ralrimivw |  |-  ( ( # ` ( Vtx ` G ) ) = 1 -> A. v e. ( Vtx ` G ) ( G NeighbVtx v ) = (/) ) | 
						
							| 3 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 4 | 3 | rusgrpropnb |  |-  ( G RegUSGraph K -> ( G e. USGraph /\ K e. NN0* /\ A. v e. ( Vtx ` G ) ( # ` ( G NeighbVtx v ) ) = K ) ) | 
						
							| 5 | 2 4 | anim12i |  |-  ( ( ( # ` ( Vtx ` G ) ) = 1 /\ G RegUSGraph K ) -> ( A. v e. ( Vtx ` G ) ( G NeighbVtx v ) = (/) /\ ( G e. USGraph /\ K e. NN0* /\ A. v e. ( Vtx ` G ) ( # ` ( G NeighbVtx v ) ) = K ) ) ) | 
						
							| 6 |  | fvex |  |-  ( Vtx ` G ) e. _V | 
						
							| 7 |  | rusgr1vtxlem |  |-  ( ( ( A. v e. ( Vtx ` G ) ( # ` ( G NeighbVtx v ) ) = K /\ A. v e. ( Vtx ` G ) ( G NeighbVtx v ) = (/) ) /\ ( ( Vtx ` G ) e. _V /\ ( # ` ( Vtx ` G ) ) = 1 ) ) -> K = 0 ) | 
						
							| 8 | 7 | ex |  |-  ( ( A. v e. ( Vtx ` G ) ( # ` ( G NeighbVtx v ) ) = K /\ A. v e. ( Vtx ` G ) ( G NeighbVtx v ) = (/) ) -> ( ( ( Vtx ` G ) e. _V /\ ( # ` ( Vtx ` G ) ) = 1 ) -> K = 0 ) ) | 
						
							| 9 | 6 8 | mpani |  |-  ( ( A. v e. ( Vtx ` G ) ( # ` ( G NeighbVtx v ) ) = K /\ A. v e. ( Vtx ` G ) ( G NeighbVtx v ) = (/) ) -> ( ( # ` ( Vtx ` G ) ) = 1 -> K = 0 ) ) | 
						
							| 10 | 9 | ex |  |-  ( A. v e. ( Vtx ` G ) ( # ` ( G NeighbVtx v ) ) = K -> ( A. v e. ( Vtx ` G ) ( G NeighbVtx v ) = (/) -> ( ( # ` ( Vtx ` G ) ) = 1 -> K = 0 ) ) ) | 
						
							| 11 | 10 | 3ad2ant3 |  |-  ( ( G e. USGraph /\ K e. NN0* /\ A. v e. ( Vtx ` G ) ( # ` ( G NeighbVtx v ) ) = K ) -> ( A. v e. ( Vtx ` G ) ( G NeighbVtx v ) = (/) -> ( ( # ` ( Vtx ` G ) ) = 1 -> K = 0 ) ) ) | 
						
							| 12 | 11 | com13 |  |-  ( ( # ` ( Vtx ` G ) ) = 1 -> ( A. v e. ( Vtx ` G ) ( G NeighbVtx v ) = (/) -> ( ( G e. USGraph /\ K e. NN0* /\ A. v e. ( Vtx ` G ) ( # ` ( G NeighbVtx v ) ) = K ) -> K = 0 ) ) ) | 
						
							| 13 | 12 | impd |  |-  ( ( # ` ( Vtx ` G ) ) = 1 -> ( ( A. v e. ( Vtx ` G ) ( G NeighbVtx v ) = (/) /\ ( G e. USGraph /\ K e. NN0* /\ A. v e. ( Vtx ` G ) ( # ` ( G NeighbVtx v ) ) = K ) ) -> K = 0 ) ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ( # ` ( Vtx ` G ) ) = 1 /\ G RegUSGraph K ) -> ( ( A. v e. ( Vtx ` G ) ( G NeighbVtx v ) = (/) /\ ( G e. USGraph /\ K e. NN0* /\ A. v e. ( Vtx ` G ) ( # ` ( G NeighbVtx v ) ) = K ) ) -> K = 0 ) ) | 
						
							| 15 | 5 14 | mpd |  |-  ( ( ( # ` ( Vtx ` G ) ) = 1 /\ G RegUSGraph K ) -> K = 0 ) |