Step |
Hyp |
Ref |
Expression |
1 |
|
nbgr1vtx |
|- ( ( # ` ( Vtx ` G ) ) = 1 -> ( G NeighbVtx v ) = (/) ) |
2 |
1
|
ralrimivw |
|- ( ( # ` ( Vtx ` G ) ) = 1 -> A. v e. ( Vtx ` G ) ( G NeighbVtx v ) = (/) ) |
3 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
4 |
3
|
rusgrpropnb |
|- ( G RegUSGraph K -> ( G e. USGraph /\ K e. NN0* /\ A. v e. ( Vtx ` G ) ( # ` ( G NeighbVtx v ) ) = K ) ) |
5 |
2 4
|
anim12i |
|- ( ( ( # ` ( Vtx ` G ) ) = 1 /\ G RegUSGraph K ) -> ( A. v e. ( Vtx ` G ) ( G NeighbVtx v ) = (/) /\ ( G e. USGraph /\ K e. NN0* /\ A. v e. ( Vtx ` G ) ( # ` ( G NeighbVtx v ) ) = K ) ) ) |
6 |
|
fvex |
|- ( Vtx ` G ) e. _V |
7 |
|
rusgr1vtxlem |
|- ( ( ( A. v e. ( Vtx ` G ) ( # ` ( G NeighbVtx v ) ) = K /\ A. v e. ( Vtx ` G ) ( G NeighbVtx v ) = (/) ) /\ ( ( Vtx ` G ) e. _V /\ ( # ` ( Vtx ` G ) ) = 1 ) ) -> K = 0 ) |
8 |
7
|
ex |
|- ( ( A. v e. ( Vtx ` G ) ( # ` ( G NeighbVtx v ) ) = K /\ A. v e. ( Vtx ` G ) ( G NeighbVtx v ) = (/) ) -> ( ( ( Vtx ` G ) e. _V /\ ( # ` ( Vtx ` G ) ) = 1 ) -> K = 0 ) ) |
9 |
6 8
|
mpani |
|- ( ( A. v e. ( Vtx ` G ) ( # ` ( G NeighbVtx v ) ) = K /\ A. v e. ( Vtx ` G ) ( G NeighbVtx v ) = (/) ) -> ( ( # ` ( Vtx ` G ) ) = 1 -> K = 0 ) ) |
10 |
9
|
ex |
|- ( A. v e. ( Vtx ` G ) ( # ` ( G NeighbVtx v ) ) = K -> ( A. v e. ( Vtx ` G ) ( G NeighbVtx v ) = (/) -> ( ( # ` ( Vtx ` G ) ) = 1 -> K = 0 ) ) ) |
11 |
10
|
3ad2ant3 |
|- ( ( G e. USGraph /\ K e. NN0* /\ A. v e. ( Vtx ` G ) ( # ` ( G NeighbVtx v ) ) = K ) -> ( A. v e. ( Vtx ` G ) ( G NeighbVtx v ) = (/) -> ( ( # ` ( Vtx ` G ) ) = 1 -> K = 0 ) ) ) |
12 |
11
|
com13 |
|- ( ( # ` ( Vtx ` G ) ) = 1 -> ( A. v e. ( Vtx ` G ) ( G NeighbVtx v ) = (/) -> ( ( G e. USGraph /\ K e. NN0* /\ A. v e. ( Vtx ` G ) ( # ` ( G NeighbVtx v ) ) = K ) -> K = 0 ) ) ) |
13 |
12
|
impd |
|- ( ( # ` ( Vtx ` G ) ) = 1 -> ( ( A. v e. ( Vtx ` G ) ( G NeighbVtx v ) = (/) /\ ( G e. USGraph /\ K e. NN0* /\ A. v e. ( Vtx ` G ) ( # ` ( G NeighbVtx v ) ) = K ) ) -> K = 0 ) ) |
14 |
13
|
adantr |
|- ( ( ( # ` ( Vtx ` G ) ) = 1 /\ G RegUSGraph K ) -> ( ( A. v e. ( Vtx ` G ) ( G NeighbVtx v ) = (/) /\ ( G e. USGraph /\ K e. NN0* /\ A. v e. ( Vtx ` G ) ( # ` ( G NeighbVtx v ) ) = K ) ) -> K = 0 ) ) |
15 |
5 14
|
mpd |
|- ( ( ( # ` ( Vtx ` G ) ) = 1 /\ G RegUSGraph K ) -> K = 0 ) |