Step |
Hyp |
Ref |
Expression |
1 |
|
fvex |
|- ( Vtx ` G ) e. _V |
2 |
|
hash1snb |
|- ( ( Vtx ` G ) e. _V -> ( ( # ` ( Vtx ` G ) ) = 1 <-> E. v ( Vtx ` G ) = { v } ) ) |
3 |
1 2
|
ax-mp |
|- ( ( # ` ( Vtx ` G ) ) = 1 <-> E. v ( Vtx ` G ) = { v } ) |
4 |
|
ral0 |
|- A. n e. (/) -. E. e e. ( Edg ` G ) { K , n } C_ e |
5 |
|
eleq2 |
|- ( ( Vtx ` G ) = { v } -> ( K e. ( Vtx ` G ) <-> K e. { v } ) ) |
6 |
|
simpr |
|- ( ( K = v /\ ( Vtx ` G ) = { v } ) -> ( Vtx ` G ) = { v } ) |
7 |
|
sneq |
|- ( K = v -> { K } = { v } ) |
8 |
7
|
adantr |
|- ( ( K = v /\ ( Vtx ` G ) = { v } ) -> { K } = { v } ) |
9 |
6 8
|
difeq12d |
|- ( ( K = v /\ ( Vtx ` G ) = { v } ) -> ( ( Vtx ` G ) \ { K } ) = ( { v } \ { v } ) ) |
10 |
|
difid |
|- ( { v } \ { v } ) = (/) |
11 |
9 10
|
eqtrdi |
|- ( ( K = v /\ ( Vtx ` G ) = { v } ) -> ( ( Vtx ` G ) \ { K } ) = (/) ) |
12 |
11
|
ex |
|- ( K = v -> ( ( Vtx ` G ) = { v } -> ( ( Vtx ` G ) \ { K } ) = (/) ) ) |
13 |
|
elsni |
|- ( K e. { v } -> K = v ) |
14 |
12 13
|
syl11 |
|- ( ( Vtx ` G ) = { v } -> ( K e. { v } -> ( ( Vtx ` G ) \ { K } ) = (/) ) ) |
15 |
5 14
|
sylbid |
|- ( ( Vtx ` G ) = { v } -> ( K e. ( Vtx ` G ) -> ( ( Vtx ` G ) \ { K } ) = (/) ) ) |
16 |
15
|
imp |
|- ( ( ( Vtx ` G ) = { v } /\ K e. ( Vtx ` G ) ) -> ( ( Vtx ` G ) \ { K } ) = (/) ) |
17 |
16
|
raleqdv |
|- ( ( ( Vtx ` G ) = { v } /\ K e. ( Vtx ` G ) ) -> ( A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e <-> A. n e. (/) -. E. e e. ( Edg ` G ) { K , n } C_ e ) ) |
18 |
4 17
|
mpbiri |
|- ( ( ( Vtx ` G ) = { v } /\ K e. ( Vtx ` G ) ) -> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e ) |
19 |
18
|
ex |
|- ( ( Vtx ` G ) = { v } -> ( K e. ( Vtx ` G ) -> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e ) ) |
20 |
19
|
exlimiv |
|- ( E. v ( Vtx ` G ) = { v } -> ( K e. ( Vtx ` G ) -> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e ) ) |
21 |
3 20
|
sylbi |
|- ( ( # ` ( Vtx ` G ) ) = 1 -> ( K e. ( Vtx ` G ) -> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e ) ) |
22 |
21
|
impcom |
|- ( ( K e. ( Vtx ` G ) /\ ( # ` ( Vtx ` G ) ) = 1 ) -> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e ) |
23 |
22
|
nbgr0vtxlem |
|- ( ( K e. ( Vtx ` G ) /\ ( # ` ( Vtx ` G ) ) = 1 ) -> ( G NeighbVtx K ) = (/) ) |
24 |
23
|
ex |
|- ( K e. ( Vtx ` G ) -> ( ( # ` ( Vtx ` G ) ) = 1 -> ( G NeighbVtx K ) = (/) ) ) |
25 |
|
df-nel |
|- ( K e/ ( Vtx ` G ) <-> -. K e. ( Vtx ` G ) ) |
26 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
27 |
26
|
nbgrnvtx0 |
|- ( K e/ ( Vtx ` G ) -> ( G NeighbVtx K ) = (/) ) |
28 |
25 27
|
sylbir |
|- ( -. K e. ( Vtx ` G ) -> ( G NeighbVtx K ) = (/) ) |
29 |
28
|
a1d |
|- ( -. K e. ( Vtx ` G ) -> ( ( # ` ( Vtx ` G ) ) = 1 -> ( G NeighbVtx K ) = (/) ) ) |
30 |
24 29
|
pm2.61i |
|- ( ( # ` ( Vtx ` G ) ) = 1 -> ( G NeighbVtx K ) = (/) ) |