| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvex |
|- ( Vtx ` G ) e. _V |
| 2 |
|
hash1snb |
|- ( ( Vtx ` G ) e. _V -> ( ( # ` ( Vtx ` G ) ) = 1 <-> E. v ( Vtx ` G ) = { v } ) ) |
| 3 |
1 2
|
ax-mp |
|- ( ( # ` ( Vtx ` G ) ) = 1 <-> E. v ( Vtx ` G ) = { v } ) |
| 4 |
|
ral0 |
|- A. n e. (/) -. E. e e. ( Edg ` G ) { K , n } C_ e |
| 5 |
|
eleq2 |
|- ( ( Vtx ` G ) = { v } -> ( K e. ( Vtx ` G ) <-> K e. { v } ) ) |
| 6 |
|
simpr |
|- ( ( K = v /\ ( Vtx ` G ) = { v } ) -> ( Vtx ` G ) = { v } ) |
| 7 |
|
sneq |
|- ( K = v -> { K } = { v } ) |
| 8 |
7
|
adantr |
|- ( ( K = v /\ ( Vtx ` G ) = { v } ) -> { K } = { v } ) |
| 9 |
6 8
|
difeq12d |
|- ( ( K = v /\ ( Vtx ` G ) = { v } ) -> ( ( Vtx ` G ) \ { K } ) = ( { v } \ { v } ) ) |
| 10 |
|
difid |
|- ( { v } \ { v } ) = (/) |
| 11 |
9 10
|
eqtrdi |
|- ( ( K = v /\ ( Vtx ` G ) = { v } ) -> ( ( Vtx ` G ) \ { K } ) = (/) ) |
| 12 |
11
|
ex |
|- ( K = v -> ( ( Vtx ` G ) = { v } -> ( ( Vtx ` G ) \ { K } ) = (/) ) ) |
| 13 |
|
elsni |
|- ( K e. { v } -> K = v ) |
| 14 |
12 13
|
syl11 |
|- ( ( Vtx ` G ) = { v } -> ( K e. { v } -> ( ( Vtx ` G ) \ { K } ) = (/) ) ) |
| 15 |
5 14
|
sylbid |
|- ( ( Vtx ` G ) = { v } -> ( K e. ( Vtx ` G ) -> ( ( Vtx ` G ) \ { K } ) = (/) ) ) |
| 16 |
15
|
imp |
|- ( ( ( Vtx ` G ) = { v } /\ K e. ( Vtx ` G ) ) -> ( ( Vtx ` G ) \ { K } ) = (/) ) |
| 17 |
16
|
raleqdv |
|- ( ( ( Vtx ` G ) = { v } /\ K e. ( Vtx ` G ) ) -> ( A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e <-> A. n e. (/) -. E. e e. ( Edg ` G ) { K , n } C_ e ) ) |
| 18 |
4 17
|
mpbiri |
|- ( ( ( Vtx ` G ) = { v } /\ K e. ( Vtx ` G ) ) -> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e ) |
| 19 |
18
|
ex |
|- ( ( Vtx ` G ) = { v } -> ( K e. ( Vtx ` G ) -> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e ) ) |
| 20 |
19
|
exlimiv |
|- ( E. v ( Vtx ` G ) = { v } -> ( K e. ( Vtx ` G ) -> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e ) ) |
| 21 |
3 20
|
sylbi |
|- ( ( # ` ( Vtx ` G ) ) = 1 -> ( K e. ( Vtx ` G ) -> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e ) ) |
| 22 |
21
|
impcom |
|- ( ( K e. ( Vtx ` G ) /\ ( # ` ( Vtx ` G ) ) = 1 ) -> A. n e. ( ( Vtx ` G ) \ { K } ) -. E. e e. ( Edg ` G ) { K , n } C_ e ) |
| 23 |
22
|
nbgr0edglem |
|- ( ( K e. ( Vtx ` G ) /\ ( # ` ( Vtx ` G ) ) = 1 ) -> ( G NeighbVtx K ) = (/) ) |
| 24 |
23
|
ex |
|- ( K e. ( Vtx ` G ) -> ( ( # ` ( Vtx ` G ) ) = 1 -> ( G NeighbVtx K ) = (/) ) ) |
| 25 |
|
df-nel |
|- ( K e/ ( Vtx ` G ) <-> -. K e. ( Vtx ` G ) ) |
| 26 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
| 27 |
26
|
nbgrnvtx0 |
|- ( K e/ ( Vtx ` G ) -> ( G NeighbVtx K ) = (/) ) |
| 28 |
25 27
|
sylbir |
|- ( -. K e. ( Vtx ` G ) -> ( G NeighbVtx K ) = (/) ) |
| 29 |
28
|
a1d |
|- ( -. K e. ( Vtx ` G ) -> ( ( # ` ( Vtx ` G ) ) = 1 -> ( G NeighbVtx K ) = (/) ) ) |
| 30 |
24 29
|
pm2.61i |
|- ( ( # ` ( Vtx ` G ) ) = 1 -> ( G NeighbVtx K ) = (/) ) |