Step |
Hyp |
Ref |
Expression |
1 |
|
nbgrel.v |
|- V = ( Vtx ` G ) |
2 |
|
csbfv |
|- [_ G / g ]_ ( Vtx ` g ) = ( Vtx ` G ) |
3 |
1 2
|
eqtr4i |
|- V = [_ G / g ]_ ( Vtx ` g ) |
4 |
|
neleq2 |
|- ( V = [_ G / g ]_ ( Vtx ` g ) -> ( X e/ V <-> X e/ [_ G / g ]_ ( Vtx ` g ) ) ) |
5 |
3 4
|
ax-mp |
|- ( X e/ V <-> X e/ [_ G / g ]_ ( Vtx ` g ) ) |
6 |
5
|
biimpi |
|- ( X e/ V -> X e/ [_ G / g ]_ ( Vtx ` g ) ) |
7 |
6
|
olcd |
|- ( X e/ V -> ( G e/ _V \/ X e/ [_ G / g ]_ ( Vtx ` g ) ) ) |
8 |
|
df-nbgr |
|- NeighbVtx = ( g e. _V , v e. ( Vtx ` g ) |-> { n e. ( ( Vtx ` g ) \ { v } ) | E. e e. ( Edg ` g ) { v , n } C_ e } ) |
9 |
8
|
mpoxneldm |
|- ( ( G e/ _V \/ X e/ [_ G / g ]_ ( Vtx ` g ) ) -> ( G NeighbVtx X ) = (/) ) |
10 |
7 9
|
syl |
|- ( X e/ V -> ( G NeighbVtx X ) = (/) ) |