| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nbgrel.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | csbfv | ⊢ ⦋ 𝐺  /  𝑔 ⦌ ( Vtx ‘ 𝑔 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 3 | 1 2 | eqtr4i | ⊢ 𝑉  =  ⦋ 𝐺  /  𝑔 ⦌ ( Vtx ‘ 𝑔 ) | 
						
							| 4 |  | neleq2 | ⊢ ( 𝑉  =  ⦋ 𝐺  /  𝑔 ⦌ ( Vtx ‘ 𝑔 )  →  ( 𝑋  ∉  𝑉  ↔  𝑋  ∉  ⦋ 𝐺  /  𝑔 ⦌ ( Vtx ‘ 𝑔 ) ) ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ( 𝑋  ∉  𝑉  ↔  𝑋  ∉  ⦋ 𝐺  /  𝑔 ⦌ ( Vtx ‘ 𝑔 ) ) | 
						
							| 6 | 5 | biimpi | ⊢ ( 𝑋  ∉  𝑉  →  𝑋  ∉  ⦋ 𝐺  /  𝑔 ⦌ ( Vtx ‘ 𝑔 ) ) | 
						
							| 7 | 6 | olcd | ⊢ ( 𝑋  ∉  𝑉  →  ( 𝐺  ∉  V  ∨  𝑋  ∉  ⦋ 𝐺  /  𝑔 ⦌ ( Vtx ‘ 𝑔 ) ) ) | 
						
							| 8 |  | df-nbgr | ⊢  NeighbVtx   =  ( 𝑔  ∈  V ,  𝑣  ∈  ( Vtx ‘ 𝑔 )  ↦  { 𝑛  ∈  ( ( Vtx ‘ 𝑔 )  ∖  { 𝑣 } )  ∣  ∃ 𝑒  ∈  ( Edg ‘ 𝑔 ) { 𝑣 ,  𝑛 }  ⊆  𝑒 } ) | 
						
							| 9 | 8 | mpoxneldm | ⊢ ( ( 𝐺  ∉  V  ∨  𝑋  ∉  ⦋ 𝐺  /  𝑔 ⦌ ( Vtx ‘ 𝑔 ) )  →  ( 𝐺  NeighbVtx  𝑋 )  =  ∅ ) | 
						
							| 10 | 7 9 | syl | ⊢ ( 𝑋  ∉  𝑉  →  ( 𝐺  NeighbVtx  𝑋 )  =  ∅ ) |