Step |
Hyp |
Ref |
Expression |
1 |
|
elopab |
|- ( p e. { <. v , e >. | e : (/) --> (/) } <-> E. v E. e ( p = <. v , e >. /\ e : (/) --> (/) ) ) |
2 |
|
f0bi |
|- ( e : (/) --> (/) <-> e = (/) ) |
3 |
|
opeq2 |
|- ( e = (/) -> <. v , e >. = <. v , (/) >. ) |
4 |
|
usgr0eop |
|- ( v e. _V -> <. v , (/) >. e. USGraph ) |
5 |
4
|
elv |
|- <. v , (/) >. e. USGraph |
6 |
3 5
|
eqeltrdi |
|- ( e = (/) -> <. v , e >. e. USGraph ) |
7 |
|
vex |
|- v e. _V |
8 |
|
vex |
|- e e. _V |
9 |
7 8
|
opiedgfvi |
|- ( iEdg ` <. v , e >. ) = e |
10 |
|
id |
|- ( e = (/) -> e = (/) ) |
11 |
9 10
|
eqtrid |
|- ( e = (/) -> ( iEdg ` <. v , e >. ) = (/) ) |
12 |
6 11
|
jca |
|- ( e = (/) -> ( <. v , e >. e. USGraph /\ ( iEdg ` <. v , e >. ) = (/) ) ) |
13 |
2 12
|
sylbi |
|- ( e : (/) --> (/) -> ( <. v , e >. e. USGraph /\ ( iEdg ` <. v , e >. ) = (/) ) ) |
14 |
13
|
adantl |
|- ( ( p = <. v , e >. /\ e : (/) --> (/) ) -> ( <. v , e >. e. USGraph /\ ( iEdg ` <. v , e >. ) = (/) ) ) |
15 |
|
eleq1 |
|- ( p = <. v , e >. -> ( p e. USGraph <-> <. v , e >. e. USGraph ) ) |
16 |
|
fveqeq2 |
|- ( p = <. v , e >. -> ( ( iEdg ` p ) = (/) <-> ( iEdg ` <. v , e >. ) = (/) ) ) |
17 |
15 16
|
anbi12d |
|- ( p = <. v , e >. -> ( ( p e. USGraph /\ ( iEdg ` p ) = (/) ) <-> ( <. v , e >. e. USGraph /\ ( iEdg ` <. v , e >. ) = (/) ) ) ) |
18 |
17
|
adantr |
|- ( ( p = <. v , e >. /\ e : (/) --> (/) ) -> ( ( p e. USGraph /\ ( iEdg ` p ) = (/) ) <-> ( <. v , e >. e. USGraph /\ ( iEdg ` <. v , e >. ) = (/) ) ) ) |
19 |
14 18
|
mpbird |
|- ( ( p = <. v , e >. /\ e : (/) --> (/) ) -> ( p e. USGraph /\ ( iEdg ` p ) = (/) ) ) |
20 |
|
fveqeq2 |
|- ( g = p -> ( ( iEdg ` g ) = (/) <-> ( iEdg ` p ) = (/) ) ) |
21 |
20
|
elrab |
|- ( p e. { g e. USGraph | ( iEdg ` g ) = (/) } <-> ( p e. USGraph /\ ( iEdg ` p ) = (/) ) ) |
22 |
19 21
|
sylibr |
|- ( ( p = <. v , e >. /\ e : (/) --> (/) ) -> p e. { g e. USGraph | ( iEdg ` g ) = (/) } ) |
23 |
22
|
exlimivv |
|- ( E. v E. e ( p = <. v , e >. /\ e : (/) --> (/) ) -> p e. { g e. USGraph | ( iEdg ` g ) = (/) } ) |
24 |
1 23
|
sylbi |
|- ( p e. { <. v , e >. | e : (/) --> (/) } -> p e. { g e. USGraph | ( iEdg ` g ) = (/) } ) |
25 |
24
|
ssriv |
|- { <. v , e >. | e : (/) --> (/) } C_ { g e. USGraph | ( iEdg ` g ) = (/) } |
26 |
|
eqid |
|- { <. v , e >. | e : (/) --> (/) } = { <. v , e >. | e : (/) --> (/) } |
27 |
26
|
griedg0prc |
|- { <. v , e >. | e : (/) --> (/) } e/ _V |
28 |
|
prcssprc |
|- ( ( { <. v , e >. | e : (/) --> (/) } C_ { g e. USGraph | ( iEdg ` g ) = (/) } /\ { <. v , e >. | e : (/) --> (/) } e/ _V ) -> { g e. USGraph | ( iEdg ` g ) = (/) } e/ _V ) |
29 |
25 27 28
|
mp2an |
|- { g e. USGraph | ( iEdg ` g ) = (/) } e/ _V |
30 |
|
df-3an |
|- ( ( g e. USGraph /\ 0 e. NN0* /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) <-> ( ( g e. USGraph /\ 0 e. NN0* ) /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) ) |
31 |
30
|
bicomi |
|- ( ( ( g e. USGraph /\ 0 e. NN0* ) /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) <-> ( g e. USGraph /\ 0 e. NN0* /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) ) |
32 |
31
|
a1i |
|- ( g e. USGraph -> ( ( ( g e. USGraph /\ 0 e. NN0* ) /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) <-> ( g e. USGraph /\ 0 e. NN0* /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) ) ) |
33 |
|
0xnn0 |
|- 0 e. NN0* |
34 |
|
ibar |
|- ( ( g e. USGraph /\ 0 e. NN0* ) -> ( A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 <-> ( ( g e. USGraph /\ 0 e. NN0* ) /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) ) ) |
35 |
33 34
|
mpan2 |
|- ( g e. USGraph -> ( A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 <-> ( ( g e. USGraph /\ 0 e. NN0* ) /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) ) ) |
36 |
|
eqid |
|- ( Vtx ` g ) = ( Vtx ` g ) |
37 |
|
eqid |
|- ( VtxDeg ` g ) = ( VtxDeg ` g ) |
38 |
36 37
|
isrusgr0 |
|- ( ( g e. USGraph /\ 0 e. NN0* ) -> ( g RegUSGraph 0 <-> ( g e. USGraph /\ 0 e. NN0* /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) ) ) |
39 |
33 38
|
mpan2 |
|- ( g e. USGraph -> ( g RegUSGraph 0 <-> ( g e. USGraph /\ 0 e. NN0* /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) ) ) |
40 |
32 35 39
|
3bitr4d |
|- ( g e. USGraph -> ( A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 <-> g RegUSGraph 0 ) ) |
41 |
40
|
rabbiia |
|- { g e. USGraph | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } = { g e. USGraph | g RegUSGraph 0 } |
42 |
|
usgr0edg0rusgr |
|- ( g e. USGraph -> ( g RegUSGraph 0 <-> ( Edg ` g ) = (/) ) ) |
43 |
|
usgruhgr |
|- ( g e. USGraph -> g e. UHGraph ) |
44 |
|
uhgriedg0edg0 |
|- ( g e. UHGraph -> ( ( Edg ` g ) = (/) <-> ( iEdg ` g ) = (/) ) ) |
45 |
43 44
|
syl |
|- ( g e. USGraph -> ( ( Edg ` g ) = (/) <-> ( iEdg ` g ) = (/) ) ) |
46 |
42 45
|
bitrd |
|- ( g e. USGraph -> ( g RegUSGraph 0 <-> ( iEdg ` g ) = (/) ) ) |
47 |
46
|
rabbiia |
|- { g e. USGraph | g RegUSGraph 0 } = { g e. USGraph | ( iEdg ` g ) = (/) } |
48 |
41 47
|
eqtri |
|- { g e. USGraph | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } = { g e. USGraph | ( iEdg ` g ) = (/) } |
49 |
|
neleq1 |
|- ( { g e. USGraph | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } = { g e. USGraph | ( iEdg ` g ) = (/) } -> ( { g e. USGraph | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e/ _V <-> { g e. USGraph | ( iEdg ` g ) = (/) } e/ _V ) ) |
50 |
48 49
|
ax-mp |
|- ( { g e. USGraph | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e/ _V <-> { g e. USGraph | ( iEdg ` g ) = (/) } e/ _V ) |
51 |
29 50
|
mpbir |
|- { g e. USGraph | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e/ _V |