| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rgrusgrprc |  |-  { g e. USGraph | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e/ _V | 
						
							| 2 |  | vex |  |-  g e. _V | 
						
							| 3 |  | 0xnn0 |  |-  0 e. NN0* | 
						
							| 4 |  | eqid |  |-  ( Vtx ` g ) = ( Vtx ` g ) | 
						
							| 5 |  | eqid |  |-  ( VtxDeg ` g ) = ( VtxDeg ` g ) | 
						
							| 6 | 4 5 | isrusgr0 |  |-  ( ( g e. _V /\ 0 e. NN0* ) -> ( g RegUSGraph 0 <-> ( g e. USGraph /\ 0 e. NN0* /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) ) ) | 
						
							| 7 | 2 3 6 | mp2an |  |-  ( g RegUSGraph 0 <-> ( g e. USGraph /\ 0 e. NN0* /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) ) | 
						
							| 8 |  | 3ancomb |  |-  ( ( g e. USGraph /\ 0 e. NN0* /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) <-> ( g e. USGraph /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 /\ 0 e. NN0* ) ) | 
						
							| 9 |  | df-3an |  |-  ( ( g e. USGraph /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 /\ 0 e. NN0* ) <-> ( ( g e. USGraph /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) /\ 0 e. NN0* ) ) | 
						
							| 10 | 3 9 | mpbiran2 |  |-  ( ( g e. USGraph /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 /\ 0 e. NN0* ) <-> ( g e. USGraph /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) ) | 
						
							| 11 | 7 8 10 | 3bitri |  |-  ( g RegUSGraph 0 <-> ( g e. USGraph /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) ) | 
						
							| 12 | 11 | abbii |  |-  { g | g RegUSGraph 0 } = { g | ( g e. USGraph /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) } | 
						
							| 13 |  | df-rab |  |-  { g e. USGraph | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } = { g | ( g e. USGraph /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) } | 
						
							| 14 | 12 13 | eqtr4i |  |-  { g | g RegUSGraph 0 } = { g e. USGraph | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } | 
						
							| 15 |  | neleq1 |  |-  ( { g | g RegUSGraph 0 } = { g e. USGraph | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } -> ( { g | g RegUSGraph 0 } e/ _V <-> { g e. USGraph | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e/ _V ) ) | 
						
							| 16 | 14 15 | ax-mp |  |-  ( { g | g RegUSGraph 0 } e/ _V <-> { g e. USGraph | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e/ _V ) | 
						
							| 17 | 1 16 | mpbir |  |-  { g | g RegUSGraph 0 } e/ _V |