Description: The class of 0-regular graphs is a proper class. (Contributed by AV, 27-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rgrprc | |- { g | g RegGraph 0 } e/ _V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rusgrrgr | |- ( g RegUSGraph 0 -> g RegGraph 0 ) | |
| 2 | 1 | ss2abi |  |-  { g | g RegUSGraph 0 } C_ { g | g RegGraph 0 } | 
| 3 | rusgrprc |  |-  { g | g RegUSGraph 0 } e/ _V | |
| 4 | prcssprc |  |-  ( ( { g | g RegUSGraph 0 } C_ { g | g RegGraph 0 } /\ { g | g RegUSGraph 0 } e/ _V ) -> { g | g RegGraph 0 } e/ _V ) | |
| 5 | 2 3 4 | mp2an |  |-  { g | g RegGraph 0 } e/ _V |