| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rgrprc |  |-  { g | g RegGraph 0 } e/ _V | 
						
							| 2 |  | 0xnn0 |  |-  0 e. NN0* | 
						
							| 3 |  | vex |  |-  g e. _V | 
						
							| 4 |  | eqid |  |-  ( Vtx ` g ) = ( Vtx ` g ) | 
						
							| 5 |  | eqid |  |-  ( VtxDeg ` g ) = ( VtxDeg ` g ) | 
						
							| 6 | 4 5 | isrgr |  |-  ( ( g e. _V /\ 0 e. NN0* ) -> ( g RegGraph 0 <-> ( 0 e. NN0* /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) ) ) | 
						
							| 7 | 3 2 6 | mp2an |  |-  ( g RegGraph 0 <-> ( 0 e. NN0* /\ A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) ) | 
						
							| 8 | 2 7 | mpbiran |  |-  ( g RegGraph 0 <-> A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) | 
						
							| 9 | 8 | bicomi |  |-  ( A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 <-> g RegGraph 0 ) | 
						
							| 10 | 9 | abbii |  |-  { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } = { g | g RegGraph 0 } | 
						
							| 11 |  | neleq1 |  |-  ( { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } = { g | g RegGraph 0 } -> ( { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e/ _V <-> { g | g RegGraph 0 } e/ _V ) ) | 
						
							| 12 | 10 11 | ax-mp |  |-  ( { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e/ _V <-> { g | g RegGraph 0 } e/ _V ) | 
						
							| 13 | 1 12 | mpbir |  |-  { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e/ _V |