Step |
Hyp |
Ref |
Expression |
1 |
|
rgrprc |
⊢ { 𝑔 ∣ 𝑔 RegGraph 0 } ∉ V |
2 |
|
0xnn0 |
⊢ 0 ∈ ℕ0* |
3 |
|
vex |
⊢ 𝑔 ∈ V |
4 |
|
eqid |
⊢ ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝑔 ) |
5 |
|
eqid |
⊢ ( VtxDeg ‘ 𝑔 ) = ( VtxDeg ‘ 𝑔 ) |
6 |
4 5
|
isrgr |
⊢ ( ( 𝑔 ∈ V ∧ 0 ∈ ℕ0* ) → ( 𝑔 RegGraph 0 ↔ ( 0 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) ) ) |
7 |
3 2 6
|
mp2an |
⊢ ( 𝑔 RegGraph 0 ↔ ( 0 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) ) |
8 |
2 7
|
mpbiran |
⊢ ( 𝑔 RegGraph 0 ↔ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) |
9 |
8
|
bicomi |
⊢ ( ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ↔ 𝑔 RegGraph 0 ) |
10 |
9
|
abbii |
⊢ { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } = { 𝑔 ∣ 𝑔 RegGraph 0 } |
11 |
|
neleq1 |
⊢ ( { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } = { 𝑔 ∣ 𝑔 RegGraph 0 } → ( { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∉ V ↔ { 𝑔 ∣ 𝑔 RegGraph 0 } ∉ V ) ) |
12 |
10 11
|
ax-mp |
⊢ ( { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∉ V ↔ { 𝑔 ∣ 𝑔 RegGraph 0 } ∉ V ) |
13 |
1 12
|
mpbir |
⊢ { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∉ V |