| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rgrprc | ⊢ { 𝑔  ∣  𝑔  RegGraph  0 }  ∉  V | 
						
							| 2 |  | 0xnn0 | ⊢ 0  ∈  ℕ0* | 
						
							| 3 |  | vex | ⊢ 𝑔  ∈  V | 
						
							| 4 |  | eqid | ⊢ ( Vtx ‘ 𝑔 )  =  ( Vtx ‘ 𝑔 ) | 
						
							| 5 |  | eqid | ⊢ ( VtxDeg ‘ 𝑔 )  =  ( VtxDeg ‘ 𝑔 ) | 
						
							| 6 | 4 5 | isrgr | ⊢ ( ( 𝑔  ∈  V  ∧  0  ∈  ℕ0* )  →  ( 𝑔  RegGraph  0  ↔  ( 0  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  0 ) ) ) | 
						
							| 7 | 3 2 6 | mp2an | ⊢ ( 𝑔  RegGraph  0  ↔  ( 0  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  0 ) ) | 
						
							| 8 | 2 7 | mpbiran | ⊢ ( 𝑔  RegGraph  0  ↔  ∀ 𝑣  ∈  ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  0 ) | 
						
							| 9 | 8 | bicomi | ⊢ ( ∀ 𝑣  ∈  ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  0  ↔  𝑔  RegGraph  0 ) | 
						
							| 10 | 9 | abbii | ⊢ { 𝑔  ∣  ∀ 𝑣  ∈  ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  0 }  =  { 𝑔  ∣  𝑔  RegGraph  0 } | 
						
							| 11 |  | neleq1 | ⊢ ( { 𝑔  ∣  ∀ 𝑣  ∈  ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  0 }  =  { 𝑔  ∣  𝑔  RegGraph  0 }  →  ( { 𝑔  ∣  ∀ 𝑣  ∈  ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  0 }  ∉  V  ↔  { 𝑔  ∣  𝑔  RegGraph  0 }  ∉  V ) ) | 
						
							| 12 | 10 11 | ax-mp | ⊢ ( { 𝑔  ∣  ∀ 𝑣  ∈  ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  0 }  ∉  V  ↔  { 𝑔  ∣  𝑔  RegGraph  0 }  ∉  V ) | 
						
							| 13 | 1 12 | mpbir | ⊢ { 𝑔  ∣  ∀ 𝑣  ∈  ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  0 }  ∉  V |