Metamath Proof Explorer


Theorem rgrprcx

Description: The class of 0-regular graphs is a proper class. (Contributed by AV, 27-Dec-2020)

Ref Expression
Assertion rgrprcx { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∉ V

Proof

Step Hyp Ref Expression
1 rgrprc { 𝑔𝑔 RegGraph 0 } ∉ V
2 0xnn0 0 ∈ ℕ0*
3 vex 𝑔 ∈ V
4 eqid ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝑔 )
5 eqid ( VtxDeg ‘ 𝑔 ) = ( VtxDeg ‘ 𝑔 )
6 4 5 isrgr ( ( 𝑔 ∈ V ∧ 0 ∈ ℕ0* ) → ( 𝑔 RegGraph 0 ↔ ( 0 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) ) )
7 3 2 6 mp2an ( 𝑔 RegGraph 0 ↔ ( 0 ∈ ℕ0* ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) )
8 2 7 mpbiran ( 𝑔 RegGraph 0 ↔ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 )
9 8 bicomi ( ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ↔ 𝑔 RegGraph 0 )
10 9 abbii { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } = { 𝑔𝑔 RegGraph 0 }
11 neleq1 ( { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } = { 𝑔𝑔 RegGraph 0 } → ( { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∉ V ↔ { 𝑔𝑔 RegGraph 0 } ∉ V ) )
12 10 11 ax-mp ( { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∉ V ↔ { 𝑔𝑔 RegGraph 0 } ∉ V )
13 1 12 mpbir { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∉ V