| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rgrx0ndm.u | ⊢ 𝑅  =  ( 𝑘  ∈  ℕ0*  ↦  { 𝑔  ∣  ∀ 𝑣  ∈  ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  𝑘 } ) | 
						
							| 2 |  | rgrprcx | ⊢ { 𝑔  ∣  ∀ 𝑣  ∈  ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  0 }  ∉  V | 
						
							| 3 | 2 | neli | ⊢ ¬  { 𝑔  ∣  ∀ 𝑣  ∈  ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  0 }  ∈  V | 
						
							| 4 | 3 | intnan | ⊢ ¬  ( 0  ∈  ℕ0*  ∧  { 𝑔  ∣  ∀ 𝑣  ∈  ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  0 }  ∈  V ) | 
						
							| 5 |  | df-nel | ⊢ ( 0  ∉  dom  𝑅  ↔  ¬  0  ∈  dom  𝑅 ) | 
						
							| 6 |  | eqeq2 | ⊢ ( 𝑘  =  0  →  ( ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  𝑘  ↔  ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  0 ) ) | 
						
							| 7 | 6 | ralbidv | ⊢ ( 𝑘  =  0  →  ( ∀ 𝑣  ∈  ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  𝑘  ↔  ∀ 𝑣  ∈  ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  0 ) ) | 
						
							| 8 | 7 | abbidv | ⊢ ( 𝑘  =  0  →  { 𝑔  ∣  ∀ 𝑣  ∈  ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  𝑘 }  =  { 𝑔  ∣  ∀ 𝑣  ∈  ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  0 } ) | 
						
							| 9 | 8 | eleq1d | ⊢ ( 𝑘  =  0  →  ( { 𝑔  ∣  ∀ 𝑣  ∈  ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  𝑘 }  ∈  V  ↔  { 𝑔  ∣  ∀ 𝑣  ∈  ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  0 }  ∈  V ) ) | 
						
							| 10 | 1 | dmmpt | ⊢ dom  𝑅  =  { 𝑘  ∈  ℕ0*  ∣  { 𝑔  ∣  ∀ 𝑣  ∈  ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  𝑘 }  ∈  V } | 
						
							| 11 | 9 10 | elrab2 | ⊢ ( 0  ∈  dom  𝑅  ↔  ( 0  ∈  ℕ0*  ∧  { 𝑔  ∣  ∀ 𝑣  ∈  ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  0 }  ∈  V ) ) | 
						
							| 12 | 5 11 | xchbinx | ⊢ ( 0  ∉  dom  𝑅  ↔  ¬  ( 0  ∈  ℕ0*  ∧  { 𝑔  ∣  ∀ 𝑣  ∈  ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  0 }  ∈  V ) ) | 
						
							| 13 | 4 12 | mpbir | ⊢ 0  ∉  dom  𝑅 |