Metamath Proof Explorer


Theorem rgrx0ndm

Description: 0 is not in the domain of the potentially alternative definition of the sets of k-regular graphs for each extended nonnegative integer k. (Contributed by AV, 28-Dec-2020)

Ref Expression
Hypothesis rgrx0ndm.u 𝑅 = ( 𝑘 ∈ ℕ0* ↦ { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 𝑘 } )
Assertion rgrx0ndm 0 ∉ dom 𝑅

Proof

Step Hyp Ref Expression
1 rgrx0ndm.u 𝑅 = ( 𝑘 ∈ ℕ0* ↦ { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 𝑘 } )
2 rgrprcx { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∉ V
3 2 neli ¬ { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∈ V
4 3 intnan ¬ ( 0 ∈ ℕ0* ∧ { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∈ V )
5 df-nel ( 0 ∉ dom 𝑅 ↔ ¬ 0 ∈ dom 𝑅 )
6 eqeq2 ( 𝑘 = 0 → ( ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 𝑘 ↔ ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) )
7 6 ralbidv ( 𝑘 = 0 → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 𝑘 ↔ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 ) )
8 7 abbidv ( 𝑘 = 0 → { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 𝑘 } = { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } )
9 8 eleq1d ( 𝑘 = 0 → ( { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 𝑘 } ∈ V ↔ { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∈ V ) )
10 1 dmmpt dom 𝑅 = { 𝑘 ∈ ℕ0* ∣ { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 𝑘 } ∈ V }
11 9 10 elrab2 ( 0 ∈ dom 𝑅 ↔ ( 0 ∈ ℕ0* ∧ { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∈ V ) )
12 5 11 xchbinx ( 0 ∉ dom 𝑅 ↔ ¬ ( 0 ∈ ℕ0* ∧ { 𝑔 ∣ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 ) = 0 } ∈ V ) )
13 4 12 mpbir 0 ∉ dom 𝑅