| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rgrx0ndm.u |  |-  R = ( k e. NN0* |-> { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k } ) | 
						
							| 2 |  | rgrprcx |  |-  { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e/ _V | 
						
							| 3 | 2 | neli |  |-  -. { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e. _V | 
						
							| 4 | 3 | intnan |  |-  -. ( 0 e. NN0* /\ { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e. _V ) | 
						
							| 5 |  | df-nel |  |-  ( 0 e/ dom R <-> -. 0 e. dom R ) | 
						
							| 6 |  | eqeq2 |  |-  ( k = 0 -> ( ( ( VtxDeg ` g ) ` v ) = k <-> ( ( VtxDeg ` g ) ` v ) = 0 ) ) | 
						
							| 7 | 6 | ralbidv |  |-  ( k = 0 -> ( A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k <-> A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 ) ) | 
						
							| 8 | 7 | abbidv |  |-  ( k = 0 -> { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k } = { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } ) | 
						
							| 9 | 8 | eleq1d |  |-  ( k = 0 -> ( { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k } e. _V <-> { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e. _V ) ) | 
						
							| 10 | 1 | dmmpt |  |-  dom R = { k e. NN0* | { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = k } e. _V } | 
						
							| 11 | 9 10 | elrab2 |  |-  ( 0 e. dom R <-> ( 0 e. NN0* /\ { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e. _V ) ) | 
						
							| 12 | 5 11 | xchbinx |  |-  ( 0 e/ dom R <-> -. ( 0 e. NN0* /\ { g | A. v e. ( Vtx ` g ) ( ( VtxDeg ` g ) ` v ) = 0 } e. _V ) ) | 
						
							| 13 | 4 12 | mpbir |  |-  0 e/ dom R |