| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isrgr.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | isrgr.d | ⊢ 𝐷  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 3 |  | eleq1 | ⊢ ( 𝑘  =  𝐾  →  ( 𝑘  ∈  ℕ0*  ↔  𝐾  ∈  ℕ0* ) ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑘  =  𝐾 )  →  ( 𝑘  ∈  ℕ0*  ↔  𝐾  ∈  ℕ0* ) ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( Vtx ‘ 𝑔 )  =  ( Vtx ‘ 𝐺 ) ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑘  =  𝐾 )  →  ( Vtx ‘ 𝑔 )  =  ( Vtx ‘ 𝐺 ) ) | 
						
							| 7 |  | fveq2 | ⊢ ( 𝑔  =  𝐺  →  ( VtxDeg ‘ 𝑔 )  =  ( VtxDeg ‘ 𝐺 ) ) | 
						
							| 8 | 7 | fveq1d | ⊢ ( 𝑔  =  𝐺  →  ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑘  =  𝐾 )  →  ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑘  =  𝐾 )  →  𝑘  =  𝐾 ) | 
						
							| 11 | 9 10 | eqeq12d | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑘  =  𝐾 )  →  ( ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  𝑘  ↔  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 ) ) | 
						
							| 12 | 6 11 | raleqbidv | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑘  =  𝐾 )  →  ( ∀ 𝑣  ∈  ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  𝑘  ↔  ∀ 𝑣  ∈  ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 ) ) | 
						
							| 13 | 4 12 | anbi12d | ⊢ ( ( 𝑔  =  𝐺  ∧  𝑘  =  𝐾 )  →  ( ( 𝑘  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  𝑘 )  ↔  ( 𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 ) ) ) | 
						
							| 14 |  | df-rgr | ⊢  RegGraph   =  { 〈 𝑔 ,  𝑘 〉  ∣  ( 𝑘  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  ( Vtx ‘ 𝑔 ) ( ( VtxDeg ‘ 𝑔 ) ‘ 𝑣 )  =  𝑘 ) } | 
						
							| 15 | 13 14 | brabga | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝐾  ∈  𝑍 )  →  ( 𝐺  RegGraph  𝐾  ↔  ( 𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 ) ) ) | 
						
							| 16 | 2 | fveq1i | ⊢ ( 𝐷 ‘ 𝑣 )  =  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 ) | 
						
							| 17 | 16 | eqeq1i | ⊢ ( ( 𝐷 ‘ 𝑣 )  =  𝐾  ↔  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 ) | 
						
							| 18 | 1 17 | raleqbii | ⊢ ( ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾  ↔  ∀ 𝑣  ∈  ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 ) | 
						
							| 19 | 18 | bicomi | ⊢ ( ∀ 𝑣  ∈  ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  ↔  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾 ) | 
						
							| 20 | 19 | a1i | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝐾  ∈  𝑍 )  →  ( ∀ 𝑣  ∈  ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾  ↔  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾 ) ) | 
						
							| 21 | 20 | anbi2d | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝐾  ∈  𝑍 )  →  ( ( 𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  𝐾 )  ↔  ( 𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾 ) ) ) | 
						
							| 22 | 15 21 | bitrd | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝐾  ∈  𝑍 )  →  ( 𝐺  RegGraph  𝐾  ↔  ( 𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾 ) ) ) |