| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isrusgr0.v |  |-  V = ( Vtx ` G ) | 
						
							| 2 |  | isrusgr0.d |  |-  D = ( VtxDeg ` G ) | 
						
							| 3 |  | isrusgr |  |-  ( ( G e. W /\ K e. Z ) -> ( G RegUSGraph K <-> ( G e. USGraph /\ G RegGraph K ) ) ) | 
						
							| 4 | 1 2 | isrgr |  |-  ( ( G e. W /\ K e. Z ) -> ( G RegGraph K <-> ( K e. NN0* /\ A. v e. V ( D ` v ) = K ) ) ) | 
						
							| 5 | 4 | anbi2d |  |-  ( ( G e. W /\ K e. Z ) -> ( ( G e. USGraph /\ G RegGraph K ) <-> ( G e. USGraph /\ ( K e. NN0* /\ A. v e. V ( D ` v ) = K ) ) ) ) | 
						
							| 6 |  | 3anass |  |-  ( ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( D ` v ) = K ) <-> ( G e. USGraph /\ ( K e. NN0* /\ A. v e. V ( D ` v ) = K ) ) ) | 
						
							| 7 | 5 6 | bitr4di |  |-  ( ( G e. W /\ K e. Z ) -> ( ( G e. USGraph /\ G RegGraph K ) <-> ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( D ` v ) = K ) ) ) | 
						
							| 8 | 3 7 | bitrd |  |-  ( ( G e. W /\ K e. Z ) -> ( G RegUSGraph K <-> ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( D ` v ) = K ) ) ) |