| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eleq1 |
|- ( g = G -> ( g e. USGraph <-> G e. USGraph ) ) |
| 2 |
1
|
adantr |
|- ( ( g = G /\ k = K ) -> ( g e. USGraph <-> G e. USGraph ) ) |
| 3 |
|
breq12 |
|- ( ( g = G /\ k = K ) -> ( g RegGraph k <-> G RegGraph K ) ) |
| 4 |
2 3
|
anbi12d |
|- ( ( g = G /\ k = K ) -> ( ( g e. USGraph /\ g RegGraph k ) <-> ( G e. USGraph /\ G RegGraph K ) ) ) |
| 5 |
|
df-rusgr |
|- RegUSGraph = { <. g , k >. | ( g e. USGraph /\ g RegGraph k ) } |
| 6 |
4 5
|
brabga |
|- ( ( G e. W /\ K e. Z ) -> ( G RegUSGraph K <-> ( G e. USGraph /\ G RegGraph K ) ) ) |