| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isrusgr0.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | isrusgr0.d | ⊢ 𝐷  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 3 |  | isrusgr | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝐾  ∈  𝑍 )  →  ( 𝐺  RegUSGraph  𝐾  ↔  ( 𝐺  ∈  USGraph  ∧  𝐺  RegGraph  𝐾 ) ) ) | 
						
							| 4 | 1 2 | isrgr | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝐾  ∈  𝑍 )  →  ( 𝐺  RegGraph  𝐾  ↔  ( 𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾 ) ) ) | 
						
							| 5 | 4 | anbi2d | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝐾  ∈  𝑍 )  →  ( ( 𝐺  ∈  USGraph  ∧  𝐺  RegGraph  𝐾 )  ↔  ( 𝐺  ∈  USGraph  ∧  ( 𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾 ) ) ) ) | 
						
							| 6 |  | 3anass | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾 )  ↔  ( 𝐺  ∈  USGraph  ∧  ( 𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾 ) ) ) | 
						
							| 7 | 5 6 | bitr4di | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝐾  ∈  𝑍 )  →  ( ( 𝐺  ∈  USGraph  ∧  𝐺  RegGraph  𝐾 )  ↔  ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾 ) ) ) | 
						
							| 8 | 3 7 | bitrd | ⊢ ( ( 𝐺  ∈  𝑊  ∧  𝐾  ∈  𝑍 )  →  ( 𝐺  RegUSGraph  𝐾  ↔  ( 𝐺  ∈  USGraph  ∧  𝐾  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  𝑉 ( 𝐷 ‘ 𝑣 )  =  𝐾 ) ) ) |