Metamath Proof Explorer


Theorem isrusgr0

Description: The property of being a k-regular simple graph. (Contributed by Alexander van der Vekens, 7-Jul-2018) (Revised by AV, 26-Dec-2020)

Ref Expression
Hypotheses isrusgr0.v 𝑉 = ( Vtx ‘ 𝐺 )
isrusgr0.d 𝐷 = ( VtxDeg ‘ 𝐺 )
Assertion isrusgr0 ( ( 𝐺𝑊𝐾𝑍 ) → ( 𝐺 RegUSGraph 𝐾 ↔ ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) ) )

Proof

Step Hyp Ref Expression
1 isrusgr0.v 𝑉 = ( Vtx ‘ 𝐺 )
2 isrusgr0.d 𝐷 = ( VtxDeg ‘ 𝐺 )
3 isrusgr ( ( 𝐺𝑊𝐾𝑍 ) → ( 𝐺 RegUSGraph 𝐾 ↔ ( 𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾 ) ) )
4 1 2 isrgr ( ( 𝐺𝑊𝐾𝑍 ) → ( 𝐺 RegGraph 𝐾 ↔ ( 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) ) )
5 4 anbi2d ( ( 𝐺𝑊𝐾𝑍 ) → ( ( 𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾 ) ↔ ( 𝐺 ∈ USGraph ∧ ( 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) ) ) )
6 3anass ( ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) ↔ ( 𝐺 ∈ USGraph ∧ ( 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) ) )
7 5 6 bitr4di ( ( 𝐺𝑊𝐾𝑍 ) → ( ( 𝐺 ∈ USGraph ∧ 𝐺 RegGraph 𝐾 ) ↔ ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) ) )
8 3 7 bitrd ( ( 𝐺𝑊𝐾𝑍 ) → ( 𝐺 RegUSGraph 𝐾 ↔ ( 𝐺 ∈ USGraph ∧ 𝐾 ∈ ℕ0* ∧ ∀ 𝑣𝑉 ( 𝐷𝑣 ) = 𝐾 ) ) )