| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 2 |  | isrusgr |  |-  ( ( G e. USGraph /\ 0 e. NN0 ) -> ( G RegUSGraph 0 <-> ( G e. USGraph /\ G RegGraph 0 ) ) ) | 
						
							| 3 | 1 2 | mpan2 |  |-  ( G e. USGraph -> ( G RegUSGraph 0 <-> ( G e. USGraph /\ G RegGraph 0 ) ) ) | 
						
							| 4 |  | ibar |  |-  ( G e. USGraph -> ( G RegGraph 0 <-> ( G e. USGraph /\ G RegGraph 0 ) ) ) | 
						
							| 5 |  | usgruhgr |  |-  ( G e. USGraph -> G e. UHGraph ) | 
						
							| 6 |  | uhgr0edg0rgrb |  |-  ( G e. UHGraph -> ( G RegGraph 0 <-> ( Edg ` G ) = (/) ) ) | 
						
							| 7 | 5 6 | syl |  |-  ( G e. USGraph -> ( G RegGraph 0 <-> ( Edg ` G ) = (/) ) ) | 
						
							| 8 | 3 4 7 | 3bitr2d |  |-  ( G e. USGraph -> ( G RegUSGraph 0 <-> ( Edg ` G ) = (/) ) ) |