| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 2 |  | eqid |  |-  ( Edg ` G ) = ( Edg ` G ) | 
						
							| 3 | 1 2 | uhgrvd00 |  |-  ( G e. UHGraph -> ( A. v e. ( Vtx ` G ) ( ( VtxDeg ` G ) ` v ) = 0 -> ( Edg ` G ) = (/) ) ) | 
						
							| 4 | 3 | com12 |  |-  ( A. v e. ( Vtx ` G ) ( ( VtxDeg ` G ) ` v ) = 0 -> ( G e. UHGraph -> ( Edg ` G ) = (/) ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( 0 e. NN0* /\ A. v e. ( Vtx ` G ) ( ( VtxDeg ` G ) ` v ) = 0 ) -> ( G e. UHGraph -> ( Edg ` G ) = (/) ) ) | 
						
							| 6 |  | eqid |  |-  ( VtxDeg ` G ) = ( VtxDeg ` G ) | 
						
							| 7 | 1 6 | rgrprop |  |-  ( G RegGraph 0 -> ( 0 e. NN0* /\ A. v e. ( Vtx ` G ) ( ( VtxDeg ` G ) ` v ) = 0 ) ) | 
						
							| 8 | 5 7 | syl11 |  |-  ( G e. UHGraph -> ( G RegGraph 0 -> ( Edg ` G ) = (/) ) ) | 
						
							| 9 |  | uhgr0edg0rgr |  |-  ( ( G e. UHGraph /\ ( Edg ` G ) = (/) ) -> G RegGraph 0 ) | 
						
							| 10 | 9 | ex |  |-  ( G e. UHGraph -> ( ( Edg ` G ) = (/) -> G RegGraph 0 ) ) | 
						
							| 11 | 8 10 | impbid |  |-  ( G e. UHGraph -> ( G RegGraph 0 <-> ( Edg ` G ) = (/) ) ) |