Description: A hypergraph is 0-regular if it has no edges. (Contributed by AV, 19-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uhgr0edg0rgr | |- ( ( G e. UHGraph /\ ( Edg ` G ) = (/) ) -> G RegGraph 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgriedg0edg0 | |- ( G e. UHGraph -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) |
|
| 2 | 1 | biimpa | |- ( ( G e. UHGraph /\ ( Edg ` G ) = (/) ) -> ( iEdg ` G ) = (/) ) |
| 3 | 0edg0rgr | |- ( ( G e. UHGraph /\ ( iEdg ` G ) = (/) ) -> G RegGraph 0 ) |
|
| 4 | 2 3 | syldan | |- ( ( G e. UHGraph /\ ( Edg ` G ) = (/) ) -> G RegGraph 0 ) |