Metamath Proof Explorer


Theorem uhgr0edg0rgr

Description: A hypergraph is 0-regular if it has no edges. (Contributed by AV, 19-Dec-2020)

Ref Expression
Assertion uhgr0edg0rgr GUHGraphEdgG=GRegGraph0

Proof

Step Hyp Ref Expression
1 uhgriedg0edg0 GUHGraphEdgG=iEdgG=
2 1 biimpa GUHGraphEdgG=iEdgG=
3 0edg0rgr GUHGraphiEdgG=GRegGraph0
4 2 3 syldan GUHGraphEdgG=GRegGraph0