Metamath Proof Explorer


Theorem uhgriedg0edg0

Description: A hypergraph has no edges iff its edge function is empty. (Contributed by AV, 21-Oct-2020) (Proof shortened by AV, 8-Dec-2021)

Ref Expression
Assertion uhgriedg0edg0 GUHGraphEdgG=iEdgG=

Proof

Step Hyp Ref Expression
1 eqid iEdgG=iEdgG
2 1 uhgrfun GUHGraphFuniEdgG
3 eqid EdgG=EdgG
4 1 3 edg0iedg0 FuniEdgGEdgG=iEdgG=
5 2 4 syl GUHGraphEdgG=iEdgG=