Metamath Proof Explorer


Theorem edg0iedg0

Description: There is no edge in a graph iff its edge function is empty. (Contributed by AV, 15-Dec-2020) (Revised by AV, 8-Dec-2021)

Ref Expression
Hypotheses edg0iedg0.i I=iEdgG
edg0iedg0.e E=EdgG
Assertion edg0iedg0 FunIE=I=

Proof

Step Hyp Ref Expression
1 edg0iedg0.i I=iEdgG
2 edg0iedg0.e E=EdgG
3 edgval EdgG=raniEdgG
4 2 3 eqtri E=raniEdgG
5 4 eqeq1i E=raniEdgG=
6 5 a1i FunIE=raniEdgG=
7 1 eqcomi iEdgG=I
8 7 rneqi raniEdgG=ranI
9 8 eqeq1i raniEdgG=ranI=
10 9 a1i FunIraniEdgG=ranI=
11 funrel FunIRelI
12 relrn0 RelII=ranI=
13 12 bicomd RelIranI=I=
14 11 13 syl FunIranI=I=
15 6 10 14 3bitrd FunIE=I=