Metamath Proof Explorer


Theorem uhgredgn0

Description: An edge of a hypergraph is a nonempty subset of vertices. (Contributed by AV, 28-Nov-2020)

Ref Expression
Assertion uhgredgn0 GUHGraphEEdgGE𝒫VtxG

Proof

Step Hyp Ref Expression
1 edgval EdgG=raniEdgG
2 eqid VtxG=VtxG
3 eqid iEdgG=iEdgG
4 2 3 uhgrf GUHGraphiEdgG:domiEdgG𝒫VtxG
5 4 frnd GUHGraphraniEdgG𝒫VtxG
6 1 5 eqsstrid GUHGraphEdgG𝒫VtxG
7 6 sselda GUHGraphEEdgGE𝒫VtxG