| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr |  |-  ( ( ( G e. W /\ ( iEdg ` G ) = (/) ) /\ v e. ( Vtx ` G ) ) -> v e. ( Vtx ` G ) ) | 
						
							| 2 |  | simplr |  |-  ( ( ( G e. W /\ ( iEdg ` G ) = (/) ) /\ v e. ( Vtx ` G ) ) -> ( iEdg ` G ) = (/) ) | 
						
							| 3 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 4 |  | eqid |  |-  ( iEdg ` G ) = ( iEdg ` G ) | 
						
							| 5 | 3 4 | vtxdg0e |  |-  ( ( v e. ( Vtx ` G ) /\ ( iEdg ` G ) = (/) ) -> ( ( VtxDeg ` G ) ` v ) = 0 ) | 
						
							| 6 | 1 2 5 | syl2anc |  |-  ( ( ( G e. W /\ ( iEdg ` G ) = (/) ) /\ v e. ( Vtx ` G ) ) -> ( ( VtxDeg ` G ) ` v ) = 0 ) | 
						
							| 7 | 6 | ralrimiva |  |-  ( ( G e. W /\ ( iEdg ` G ) = (/) ) -> A. v e. ( Vtx ` G ) ( ( VtxDeg ` G ) ` v ) = 0 ) | 
						
							| 8 |  | 0xnn0 |  |-  0 e. NN0* | 
						
							| 9 | 7 8 | jctil |  |-  ( ( G e. W /\ ( iEdg ` G ) = (/) ) -> ( 0 e. NN0* /\ A. v e. ( Vtx ` G ) ( ( VtxDeg ` G ) ` v ) = 0 ) ) | 
						
							| 10 | 8 | a1i |  |-  ( ( iEdg ` G ) = (/) -> 0 e. NN0* ) | 
						
							| 11 |  | eqid |  |-  ( VtxDeg ` G ) = ( VtxDeg ` G ) | 
						
							| 12 | 3 11 | isrgr |  |-  ( ( G e. W /\ 0 e. NN0* ) -> ( G RegGraph 0 <-> ( 0 e. NN0* /\ A. v e. ( Vtx ` G ) ( ( VtxDeg ` G ) ` v ) = 0 ) ) ) | 
						
							| 13 | 10 12 | sylan2 |  |-  ( ( G e. W /\ ( iEdg ` G ) = (/) ) -> ( G RegGraph 0 <-> ( 0 e. NN0* /\ A. v e. ( Vtx ` G ) ( ( VtxDeg ` G ) ` v ) = 0 ) ) ) | 
						
							| 14 | 9 13 | mpbird |  |-  ( ( G e. W /\ ( iEdg ` G ) = (/) ) -> G RegGraph 0 ) |