| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpr | ⊢ ( ( ( 𝐺  ∈  𝑊  ∧  ( iEdg ‘ 𝐺 )  =  ∅ )  ∧  𝑣  ∈  ( Vtx ‘ 𝐺 ) )  →  𝑣  ∈  ( Vtx ‘ 𝐺 ) ) | 
						
							| 2 |  | simplr | ⊢ ( ( ( 𝐺  ∈  𝑊  ∧  ( iEdg ‘ 𝐺 )  =  ∅ )  ∧  𝑣  ∈  ( Vtx ‘ 𝐺 ) )  →  ( iEdg ‘ 𝐺 )  =  ∅ ) | 
						
							| 3 |  | eqid | ⊢ ( Vtx ‘ 𝐺 )  =  ( Vtx ‘ 𝐺 ) | 
						
							| 4 |  | eqid | ⊢ ( iEdg ‘ 𝐺 )  =  ( iEdg ‘ 𝐺 ) | 
						
							| 5 | 3 4 | vtxdg0e | ⊢ ( ( 𝑣  ∈  ( Vtx ‘ 𝐺 )  ∧  ( iEdg ‘ 𝐺 )  =  ∅ )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  0 ) | 
						
							| 6 | 1 2 5 | syl2anc | ⊢ ( ( ( 𝐺  ∈  𝑊  ∧  ( iEdg ‘ 𝐺 )  =  ∅ )  ∧  𝑣  ∈  ( Vtx ‘ 𝐺 ) )  →  ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  0 ) | 
						
							| 7 | 6 | ralrimiva | ⊢ ( ( 𝐺  ∈  𝑊  ∧  ( iEdg ‘ 𝐺 )  =  ∅ )  →  ∀ 𝑣  ∈  ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  0 ) | 
						
							| 8 |  | 0xnn0 | ⊢ 0  ∈  ℕ0* | 
						
							| 9 | 7 8 | jctil | ⊢ ( ( 𝐺  ∈  𝑊  ∧  ( iEdg ‘ 𝐺 )  =  ∅ )  →  ( 0  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  0 ) ) | 
						
							| 10 | 8 | a1i | ⊢ ( ( iEdg ‘ 𝐺 )  =  ∅  →  0  ∈  ℕ0* ) | 
						
							| 11 |  | eqid | ⊢ ( VtxDeg ‘ 𝐺 )  =  ( VtxDeg ‘ 𝐺 ) | 
						
							| 12 | 3 11 | isrgr | ⊢ ( ( 𝐺  ∈  𝑊  ∧  0  ∈  ℕ0* )  →  ( 𝐺  RegGraph  0  ↔  ( 0  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  0 ) ) ) | 
						
							| 13 | 10 12 | sylan2 | ⊢ ( ( 𝐺  ∈  𝑊  ∧  ( iEdg ‘ 𝐺 )  =  ∅ )  →  ( 𝐺  RegGraph  0  ↔  ( 0  ∈  ℕ0*  ∧  ∀ 𝑣  ∈  ( Vtx ‘ 𝐺 ) ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑣 )  =  0 ) ) ) | 
						
							| 14 | 9 13 | mpbird | ⊢ ( ( 𝐺  ∈  𝑊  ∧  ( iEdg ‘ 𝐺 )  =  ∅ )  →  𝐺  RegGraph  0 ) |